1915年,爱因斯坦发表了场方程,建立了广义相对论。一年之后,史瓦西发表了后来被用来解释黑洞的爱因斯坦场方程的解。1963年,克尔给出了旋转黑洞的解。1974年脉冲双星PSR1913+16的发现证实了致密双星系统的引力辐射完全与广义相对论的预言一致。
2016年2月11日,LSC(LIGO科学合作组织)向全世界宣布:人类首次直接探测到了引力波,并且首次观测到了双黑洞的碰撞与并合。
在这一百年里,被誉为“人类认知自然最伟大的成就”的广义相对论,一直在成长中:我们知道了时空的弯曲以及一些由时空弯曲可能产生的奇异事物,比如黑洞、引力波、奇点、虫洞甚至时间机器。在过去历史中的某些时期,甚至现在,其中有些事物被不少物理学家视为洪水猛兽般的怪物,对它们是否存在提出过强烈的怀疑。就连爱因斯坦本人直到逝世前都还在怀疑黑洞的存在。
北京时间2015年9月14日17点50分45秒,激光干涉仪引力波天文台(LIGO)分别位于美国路易斯安那州的利文斯顿和华盛顿州的汉福德的两个探测器,观测到了一次置信度高达5.1倍标准差的引力波事件:GW150914。根据LIGO的数据,该引力波事件发生于距离地球十几亿光年之外的一个遥远星系中。
两个分别为36和29太阳质量的黑洞,并合为62太阳质量黑洞,双黑洞并合最后时刻所辐射的引力波的峰值强度比整个可观测宇宙的电磁辐射强度还要高十倍以上。详细结果将在近日发表于物理评论快报(Phys. Rev. Lett., 116, 061102)。这项非凡的发现标志着天文学已经进入新的时代,人类从此打开了一扇观测宇宙的全新窗口。
引力波的本质就是时空曲率的波动,也可以唯美地称之为时空的“涟漪”。广义相对论告诉我们:在非球对称的物质分布情况下,物质运动,或物质体系的质量分布发生变化时,会产生引力波。在宇宙中,有时就会出现如致密星体碰撞并合这样极其剧烈的天体物理过程。引力波的强度由无量纲量h表示,其物理意义是引力波引起的时空畸变与平直时空度规之比。
在过去的六十年里,有许多物理学家和天文学家为证明引力波的存在做出了无数努力。其中最著名的要数引力波存在的间接实验证据——脉冲双星PSR1913+16。1974年,美国物理学家家泰勒和赫尔斯利用射电望远镜,发现了由两颗质量大致与太阳相当的中子星组成的相互旋绕的双星系统。根据广义相对论,当两个致密星体近距离彼此绕旋时,该体系会产生引力辐射。
经过4年不断升级和测试的高新LIGO终于在2015年9月初试锋芒。事实上,很多人都对2015年的第一次观测运行(O1)能否探测到信号抱有怀疑态度,因为它的灵敏度还远远没到最佳状态。然而,宇宙往往在不经意间给人以惊喜。甚至在O1没有正式启动时,GW150914就已经不期而遇了。万幸的是,O1采用的是软启动,所以在信号到达地球时,探测器已经处于工作状态了,采集到的数据也是可靠的。
在2015年9月14日北京时间17点50分45秒,LIGO位于美国利文斯顿与汉福德的两台探测器同时观测到了GW150914信号。这个信号首先由低延迟搜索方法来识别,随后LIGO干涉仪获得的引力波应变数据又被LSC的数据分析专家们拿来和一个海量的由理论计算产生的波形库中的波形相对照,这个过程是为了找到和原数据最匹配的波形,也就是通常所说的匹配滤波器法。
后续跟进的数据分析结果还显示,GW150914是一个36倍太阳质量的黑洞和一个29倍太阳质量黑洞并合事件,在并合后产生了一个62倍太阳质量带自旋的kerr黑洞。这一切发生于距离我们十几亿光年以外的地方。
爱因斯坦的广义相对论自从100年前提出以来,历经了重重考验,从对水星近日点进动的解释,到1919年爱丁顿对日全食时太阳附近光线偏折的研究,再到对引力红移的验证,每一次检验,相对论都从容应对。
而这一次引力波的探测,更是有力地支持了相对论在强引力场下的正确性。至此,广义相对论的所有主要预言被一一验证,而这一个传奇的理论在经历了一个世纪的风雨后历久弥新。引力波的发现,远远超出了检验广义相对论本身的意义。2015年9月14日引力波的发现是科学史上的里程碑。这一非凡的成就,凝聚了太多物理学家的心血,也是多少人魂牵梦萦的所在。