5G能提供非常高的上网速率,因此被经常用高速公路来类比。不妨把这个类比精细化,看看哪些因素影响公路运输效率,又怎样把这些因素还原到5G的速率计算中去的。如今的公路系统已经非常复杂,包含多层交通,多条车道,车道方向,车辆容量,货物包装,驾驶司机等多个因素,都可以影响道路的通行能力。
现代的公路经常是高架,立交,一层接一层,极大地提升了通行容量和效率。这种多层交通,就相当于5G的“多层传输”,其实就是手机和基站用相同资源进行同时收发多路数据的能力,也称作MIMO(多入多出)。在上图中,还有个“调制阶数”,这个能力相当于公路上车辆的容量。调制阶数越高,相当于车厢越大,同时运载的比特数也就越多。
车道方向的分配,也能影响公路的运载效率。比如有的时候某个方向的车流密集,而另一个方向却空空如也,相当于道路只利用的一半,需要引入潮汐车道来优化。类似的,5G主要采用TDD(时分双工)的方式,根据业务的需求,给上传和下载分配不同的时间长度,让资源利用率更优。
公路一般都有多条车道,不同的车辆可在不同的车道上并行不悖。5G也不例外,把自己的频率带宽划分成了多个小单元:子载波。子载波这个单位太小,5G就把12个子载波打包在一起,称作一个资源块(Resource Block,简称RB)。
在公路运输中,需要给货物加上包装,保护泡沫等来防止货物磕碰损坏,因此即使把车厢全部装满,总有一部分是“无用”的。5G也不例外,信道编码需要为数据加上一些冗余用于检错纠错,当前5G协议支持的最高编码率为0.92578,也就是说传输的数据里面,最多有92.578%是有用的。
另外,要开车总得有司机,而司机占据的空间也是不能用来拉货的,这部分成本是必须要付出的。对5G来说,也有一些资源单元用作控制信道,不能用来发送数据,这些系统控制用掉的资源就叫做“开销”。
有了上面的这些信息,我们就可以计算手机能达到的5G峰值速率了。我们假设采用400M带宽的毫米波,采用帧结构选项1主攻下行,可以算得:下载速率2.98Gbps,上传速率0.75Gbps!