引力波为探索和认识未知世界提供了新的重要途经和手段,空间引力波探测是世界各国竞争的科学前沿。中国科学院力学研究所作为太极计划的核心参与团队开展了空间引力波探测所需的多项关键技术研究,突破了皮米级激光干涉测量技术及高精度弱力测量技术、搭建了纳弧度级激光捕获跟瞄一体化地面模拟系统、研制了国内首套光粘干涉仪样机,力争实现国际空间引力波探测的首次突破。
当我们仰望天空,苍穹上的点点星光总让人着迷;当我们望向远方,生命来自何处又归向何方的思绪亦常涌上心头。茫茫宇宙珍藏了世间美好又埋藏了无数秘密,为窥探其中的奥秘,人类从未停止探寻天空的脚步,人造卫星、射电望远镜、空间站、载人航天让我们一步一步拉近与宇宙间的距离,然而暗能量、暗物质、黑洞起源、早期宇宙相变等传统探测手段无法观测的现象又一次次见证了我们的渺小。
幸运的是,引力波为探索和认识未知世界提供了新的重要途经和手段。如果说电磁波让我们看到了浩瀚的星空,那么引力波就让我们听到了来自宇宙的声音。
引力波是爱因斯坦广义相对论中最重要的预言之一,由物质和能量的剧烈运动和变化所产生,在行进过程中挤压或者拉伸时空,类似于水面泛起的涟漪一般,以光速向外传播。
引力波提供了有别于电磁波的全新的观测宇宙的窗口,通过引力波探测将可能揭开暗能量和暗物质的神秘面纱,为我们呈现一幅更完整的宇宙图景,同时为揭示引力本质、发现引力子和探索大统一理论提供了一个不可替代的途径。相较于电磁波而言,引力波与物质之间作用十分微弱,可以没有能量损耗地穿透任何物质。
对于深空及极端条件探测,如大质量黑洞合并、超新星引力坍缩、致密双星系统、大爆炸留下的背景辐射等,引力波将成为有力的探测手段。因此,引力波被称为物理学皇冠上的明珠,是科技强国竞争的科学前沿。然而由于引力波信号非常微弱,探测难度极大,从爱因斯坦提出预言开始整整100年的时间里,各国科学家们经过了无数次的尝试,终于在2016年通过美国的地面引力波探测天线LIGO成功实现了人类历史上首次引力波信号的探测。
受限于地面噪声及地面实验尺度的限制,LIGO仅能测量10赫兹以上高频段的引力波信号,而0.1毫赫兹~1赫兹的中低频段具有极其丰富的波源,具有更深刻的宇宙学和天文学意义,对应更重要的科学价值和应用前景。空间引力波探测可摆脱地面实验的限制,在太空开展百万公里级精密激光干涉测量,实现中低频引力波信号的探测,是世界各国逐鹿的下一个科技制高点,但也将面临比地面探测更大的技术挑战。
太极计划是由中国科学院牵头发起的空间引力波探测计划,拟发射3颗卫星在太空构建300万公里臂长等边三角形编队,卫星间两两通过激光建立连接。当引力波信号经过时会引起时空的弯曲进而改变光束在两测量点间传输的距离,利用高精度激光干涉仪对这个距离变化进行读出即可实现引力波信号的反演,有望实现国际上首次中低频段引力波信号的探测。然而测量原理看似简单,实现起来却困难重重,测量技术的发展将起到决定性的作用。
中国科学院力学研究所作为太极计划的核心参与单位,在国家重点研发计划的长期支持下,致力于推动我国空间引力波探测事业的发展,与中国科学院大学、国科大杭州高等研究院、中国科学院长春光学精密机械与物理研究所、中国科学院上海技术物理研究所、中国科学院微小卫星创新研究院等单位组成研究团队,深入开展空间引力波探测科学载荷研究,突破了皮米级位移测量、纳弧度级角度测量和高精度惯性基准构建等技术难题,参与研制的“太极一号”实验卫星迈出了中国空间引力波探测的第一步。