几何为万物赋能
建筑、医疗、动漫、游戏
顾险峰
返朴
2019-11-16 08:00:57
顾险峰, 美国纽约州立大学石溪分校计算机系终身教授,哈佛大学数学科学与应用中心兼职教授。曾获美国国家自然科学基金CAREER奖,有华人菲尔茨奖之称的晨兴应用数学金奖等。他是国际著名微分几何大师菲尔茨奖得主丘成桐先生的得意门生,在丘先生的指导下,将抽象的现代几何与拓扑理论转化成实用的计算方法。
创立了横跨数学与计算机科学的学科计算共形几何,并广泛应用于计算机图形学、计算机视觉、计算机辅助设计、物联网、医学影像,和人工智能等领域。
计算机专业,几十年没有发展,核心就是基础的数学理论没有看清楚,很多事是几何理论没有看清楚。有的理论得到了飞速发展,是因为终于有一个几何理论取得了突破,将现代数学的这个思想方法引入到这个理论里面。从小处说,计算机非常好玩、非常强有力,甚至可以说计算机能改变世界。
数学非常优美、非常深刻,如果能领悟到其中一些原理,作为凡夫俗子,这是最切实可行的方法让我们可以真正体会到宇宙的真理,得到宇宙永恒的精神。哪怕我们了解一些皮毛,也能够更多地理解宇宙的真谛,这是多么深奥的一个话题。
几何是自然界的语言,最深刻的几何原理,也是人类最能审美的一个方向。所以,越深刻的几何原理,人类通过直觉越容易领会到。今天这里,我们不讲数学公式,所有东西都用艺术,或者是其他比较浅显的方式来讲解。
建筑设计中的数学几何原理:大兴国际机场
北京的大兴国际机场,被称为世界七大奇迹之首,耗资800亿。它的造型非常地瑰丽,气势非常宏伟,像一个凤凰一样。这个建筑是国际著名建筑师扎哈·哈迪德设计的。
哈迪德本身是学数学出身,她创立了一个新的学派。这个学派最大的特点就是,用黎曼几何,来取代欧式几何。欧式几何,就是说地是平的,墙是直的,窗户都是正方形的,看起来非常地中规中矩。而哈迪德,把一切变成了曲面,在曲面上设计非常复杂的曲线,她由此也被称为了曲线之王。
我们通过哈迪德的建筑设计,可以体会到很深的一些数学原理。如果我们从空中鸟瞰大兴机场的棚顶结构,有一个非常漂亮的六芒星的结构。建筑上有很多非常光滑的曲线,实际上看它内部的钢架结构,里面有两族彼此垂直的曲线结构。这个形态非常优美,而它在几何中是对应一个非常深刻的数学概念,叫做叶状结构。为什么要设计成这种结构呢?这种叶状结构,在曲面上是无处不在的。
在过去的10年里,计算机科学领域最大的一个突破点,就在三维技术上。人们可以非常容易地得到三维的数据结构。我们用三维扫描,可以得到一个人脸的模型。这里用结构光的方法进行扫描,扫描速度非常快,解析度也非常高。我们可以看到他动态的表情变化,每一帧,有差不多50万个采样点。这样可以得到非常迅速的、大规模的三维数据的采集。
通过扫描撒贝宁先生的脸,得到了非常完美的纹理和几何。从今天来看,三维扫描的技术,已经非常成熟。我们瞬间可以得到大量的三维数据,但是现在整个瓶颈变成了软件。我们如何来处理这些非常难以处理的三维的数据,现在是非常具有挑战性的问题。
这些概念比较深刻,我们先用艺术家的观点来解释。有一个特别知名的荷兰画家叫埃舍尔。他一辈子创作了大量的将数学和艺术结合的画作。这幅图画就是他的一个非常有名的画作,叫做《画廊》。左侧有一个男青年,他站在画廊之中,看墙上的一幅画。这幅画画了一条河,河里有一艘船,河对岸是一个画廊。这个画廊中也有一个男青年,在看墙上的一幅画,那幅画上是什么呢?有一条河,河对岸有个画廊。所以它实际是一个无穷嵌套的结构。
在右侧,真实的世界,和虚拟的世界融为一体。从虚假世界融入到真实世界。这幅画在历史上非常有名,激发了很多后来的艺术工作。比如说大家熟知的《盗梦空间》还有《骇客帝国》,本质思想就是把虚拟和现实融为一体。那么这幅画作的数学原理究竟是什么?中间这个奇异点内部究竟发生了什么?其实,变换虽然非常剧烈,但是局部的形状,没有发生变化,所以这种变换有一个特殊的名字,叫做共形变换。共形的意思就是局部保持形状。
刘慈欣的《三体》有一个非常厉害的文明,叫歌者文明。后来歌者文明决定毁灭太阳系,毁灭的方式是发来一个二向箔。二向箔飘到太阳系之后,把整个太阳系三维的空间变成二维。整个流入到二向箔里面,这就是所谓的降维攻击。降维攻击的意思就是,把高维变到低维。
根据这个定理,所有的曲面都可以在保角的变换下变成三种标准几何中的一种或者变成球面或者变成欧式空间或者变成双曲空间。大一统定理的含义非常深远,它能说明从你当下所处的地方一直到宇宙的边缘,所有三维实体的表面都是曲面。所有的曲面无论多么复杂,无论怎么千变万化,最后都会归结为三种中的一种,万宗归一。
电子游戏,人人都爱,电子游戏最大的一个突破叫纹理贴图。纹理贴图怎么解释呢?在游戏公司里,有两种艺术家。一种艺术家是做雕塑的,另一类艺术家,他们是为这个雕塑涂上颜色,画出皮肤、画出纹理、画出铠甲的。第二类艺术家只能在平面上进行作画,这就需要一个技术,就是把平面的图画贴到三维的曲面上并且使它畸变尽量地减少。
在安防领域,也用到大量的计算机视觉的知识。三维人脸识别、三维人脸注册,非常普遍用到的数学几何原理。给定两张三维人脸,如何在他们之间,建立比较好的一一映射?我们的的方法就是把三维人脸,用黎曼映照,映到二维的圆盘上。这样通过降维攻击,就把这三维问题变成了二维问题。二维问题,会简化非常多。
在医学图像领域,共形几何用得也非常广泛,比如说共形脑图。人的大脑,形状非常地复杂,有很多沟回,这些沟回,随着岁月的增长是会发生变化的。比较两个大脑本身来讲非常困难。通过刚才大一统定理,我们知道存在一个共形变换。把大脑映到单位球面上,并且这个映射,基本是唯一的。得到这个映射之后,我们为大脑的每一点,确定唯一的经纬坐标。这样可以在大脑上精确地定位,进行比较。
智慧制造,是现在发展方兴未艾的一个方向。如果需要我们用碳素纤维编织一个复杂的曲面,那么如何把曲面变成编织的模式,这就需要计算叶状结构。通过几何可以把复杂的曲面,分解成两组调和的叶状结构,黑色代表一组,白色代表另外一组,它们彼此编织起来可以构成任何复杂的形状。
在智能制造中,人们用数控机床来加工各种各样的金属毛坯,用金属车刀来车这个金属的时候,要计算车刀的速度和加速度。这就需要毛坯的曲面,一定是光滑可导的。在动漫动画领域,曲面不需要可导,只需要连续就可以。但是在机械加工领域,曲面一定要可导。这就需要把粗糙的点云信息,变成样条曲面。这一步也需要把曲面先映到平面上来,在平面上去架设比较光滑的样条,这项技术用到的是同样的这个几何原理。
在医学图像中的,另外的应用,是关于癌症检测。直肠癌,是男子的第四号杀手,普通男子过了中年之后,肠子里面会长出一些息肉。如果息肉的位置长得不对,经常地摩擦溃疡,摩擦溃疡之后复合,复合之后又反复摩擦溃疡,它的DNA复制次数就会非常多,这样就非常容易出错,出错之后就会形成癌变。
虚拟肠镜的方法,核心的想法就是把肠子的皱褶打开摊平到整个平面上。如果以传统方式来检查,在活人身上是不可能实现的,但是用数字模型可以做到这一点。虚拟肠镜可以把所有肠壁的皱褶给摊开,把所有的息肉暴露出来,然后我们用CT来扫描人的直肠得到数字模型。于是,医生就可以戴上VR眼镜,来观察肠道的内壁。
在虚拟现实、增强现实中,数据压缩是一个非常关键的问题。比如我们为了表达一张老人的脸,饱经沧桑、满布皱纹,需要大量的几何信息。如果要通过无线网络来传递这个信息,或者是本身硬件性能比较差,渲染速度就非常慢。如何来压缩这个复杂的几何信息是一个非常关键的问题。
深度学习,闵科夫斯基问题和亚历山大问题是两个非常古老的定理,有上百年历史。这两个问题的描述是非常简单的。闵可夫斯基问,你能不能把这个凸多面体给确定下来?他证明这个凸多面体是存在的并且是唯一的。亚历山大,是这个问题的推广。为了表达这个两个问题,我们需要用到比较复杂的偏微分方程叫做蒙日-安培方程。这个方程奠定了,统计深度学习的基础。
所以总结一下,微分几何,还有共形几何在计算机科学中很多方面的应用。我们可以非常信服地告诉大家,几何的确是现代科技的一个非常深刻的基础。如果大家仅仅只想发表论文或者泛泛做一些研究,不需要去追求非常深刻的几何。但是如果想做出具有原始的独创性的问题,一定需要学习比较深刻的几何。各位年轻人,希望大家为几何的发展贡献自己的精力,为祖国的科技发展贡献自己的青春。