编写现代数学史,陈省身先生都感叹太难了。现代数学史研究的范围主要是在20世纪中形成的基础数学的发展历史,它自然包括了现代微分几何、抽象代数、偏微分方程与泛函分析、代数拓扑、多复变函数论、代数数论和代数几何等主要分支学科的历史。研究现代数学史和普及现代数学史知识,并且将它们与现代数学的教学有机结合起来,这对于国内数学专业的研究生学习和掌握现代数学、以及促进现代数学的研究和发展具有十分重要的意义。
数学大师陈省身先生在谈到现代数学的发展时,曾经感叹“一部二十四史从何说起”。尽管如此,在最近三十年来,还是出现了一些按分支学科编写的数学各主要分支学科在20世纪的发展史著作。依照J. Dieudonné的划分方法,20世纪现代基础数学的A级主流学科有代数拓扑与微分拓扑、微分几何、偏微分方程、复解析几何、代数几何、数论、非交换调和分析、自守形式与模形式、常微分方程、遍历理论等10门学科。
在讨论现代数学史著作的出版现状时,不能不说到《20世纪数学思想》这部介于数学通史与普及综览之间的中文著作。这部试图仿效M. Kline的《古今数学思想》的大作强调了布尔巴基的结构主义,并且以群论和拓扑学为中心,对现代数学的主要分支学科的发展作出了简略的叙述。
笔者认为,如果说在未来的现代数学通史中有一个中心分支学科的话,那么这个中心学科应该是代数几何。在20世纪数学各主要分支学科的发展过程中,代数几何所起的推动作用最大,它甚至可以看成是一个综合了数论、代数、几何、拓扑和分析的一个庞大的领域,是20世纪数学统一化的主要源动力。
最大的困难还在于如何正确理解和全面地把握现代数学。在数学中,要讲述真理是极其困难的,数学理论的形式化的陈述并没有讲清全部的真理。数学理论的真理更像是当我们在听一些专家所做的漫不经心的随口评述时,我们去捕捉专家评述的动因后才会感触到的体味,当我们最终搞清楚典型的例子时或是当我们发现了隐藏在表面化诸问题之后的实质问题时,我们才品尝到数学之真。