机器人也能打乒乓球赛了,而且达到了人类中级选手水平!这一机器人由 Google DeepMind 研究团队打造。在 29 场机器人与人类的比赛中,赢得了 45%(13/29)的比赛。值得注意的是,所有人类选手都是该机器人未见过的。虽然机器人输掉了所有与最顶尖选手的比赛,但它却战胜了 100% 的初学者和 55% 的中级选手。
专业乒乓球教练 Barney J. Reed 表示,“看着机器人与各种水平和风格的选手比赛,真是棒极了。我们的目标是让机器人达到中级水平。我觉得这个机器人甚至超出了我的预期。”相关研究论文以“Achieving Human Level Competitive Robot Table Tennis”为题,已发表在预印本网站 arXiv 上。
当前,乒乓球赛是巴黎奥运会的一大看点,乒乓球选手在比赛中展现出极高的体能水平、高速移动能力、对各式球的精准控制和超人的灵敏度。从 20 世纪 80 年代开始,研究人员就一直将乒乓球作为机器人的基准,开发了许多乒乓球机器人。
在这项研究中,通过分层和模块化策略架构、迭代定义任务分布、模拟到模拟适配层、域随机化、实时适应未知对手和硬件部署等技巧,Google DeepMind 团队实现了机器人与人类选手在竞技乒乓球比赛中达到业余人类水平的性能。为了评估智能体的技能水平,机器人与 29 名不同技能水平的乒乓球运动员进行了竞技比赛——初学者、中级、高级和高级+,这些水平是由专业乒乓球教练确定的。
面对所有对手,机器人赢得了 45% 的比赛和 46% 的单局胜利。按技能水平细分,可以看到机器人在对抗初学者时赢得了所有比赛,输掉了所有对抗高级和高级+选手的比赛,并在对抗中级选手时赢得了 55% 的比赛。这强烈表明该智能体在回合中达到了中级人类玩家的水平。研究团队表示,这一机器人学习系统仍存在一些局限性,例如对快速球和低球的反应能力有限、旋转检测精度低、缺乏多球策略战术等。
未来的研究方向包括提高机器人对各种球的处理能力、学习更复杂的策略、改进运动捕捉技术等。研究团队还表示,该研究提出的层次化策略架构和零样本模拟到真实的转换方法可以应用于其他机器人学习任务。并且,实时适应技术可以帮助机器人更好地适应不断变化的环境和任务。此外,系统设计原则对于开发高性能和鲁棒的机器人学习系统也至关重要。