如何优雅地计算π?

作者: 铸雪

来源: 外研社科学出版

发布日期: 2020-03-14 14:32:47

本文回顾了π的历史,介绍了π的定义及其计算方法,包括割圆术和无穷级数等,展示了数学家们如何逐步逼近π的真实值。

不知不觉中,我们又迎来了一年一度的“π日”(以及白色情人节)。2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节。小学数学教材告诉我们,π的小数部分是一个无限不循环小数,不能简单地用分数完全表示。所以值此π日之际,让我们重温小学的数学知识,揭开π的神秘面纱。

π就是人们常说的圆周率,是一个数学常数,定义为圆的周长和其直径的比值。早在远古时期,人类就发现圆的周长与其直径之间有着不可告人的秘密。有出土文物显示,早在古巴比伦时期,当时的几何学家已经将圆周率的值推算到25/8。最早的有记录的严谨算法可以追溯到公元前250年,古希腊数学家阿基米德通过正多边形算法得到了π的下界与上界分别为223/71与22/7,即3.140845< π <3.142857。

在此之后,数学家先后通过割圆术、无穷级数等方法计算π的值。1706年,英国天文学家约翰·梅钦已经可以利用格雷果里-莱布尼茨级数产生的公式计算到π的第100位小数。同样在这一年,威廉·琼斯在《新数学导论》中第一个将π作为圆周率的专属符号,但真正让各国数学家接受这一设定的还要归功于莱昂哈德·欧拉。1736年,欧拉在其《力学》一书中开始使用符号“π”,此后数学家们纷纷效仿。

特别地,π的值为3.1415926535897......,不仅是一个无理数(也就是说π是无限不循环小数),同时也是一个超越数(所谓“超越数”,是指不满足任何整系数多项式方程的实数的数)。“超越数”一词出自欧拉1748年的评论:“它们超越代数方法所及的范围之外。”但直到1844年,其存在性才被法国数学家刘维尔证明。

说到π的计算,就不得不提大名鼎鼎的“割圆术”。约公元265年,数学家刘徽创立了割圆术,用正3072边形计算出π的数值为3.1416。之后祖冲之在公元480年利用割圆术计算正12288边形的边长,得到圆周率约等于355/113(即密率)。在之后的八百年内,这都是准确度最高的π估计值。

利用割圆法计算圆周率虽然思路比较简单,但在计算上还是比较繁琐,尤其是过去的数学家不像小编这样可以借助Mathematica计算。至今利用多边形计算π最准确的结果是奥地利天文学家克里斯托夫·格林伯格在1630年得到的。为此格林伯格利用正10的40次方(也就是1后面40个0)边形,计算得到π的第38位小数。为此,新的思路也就应运而生。

接下来介绍的方法就来自韦达、沃利斯和莱布尼茨三位大神。韦达给出的其实并不是无穷级数,而是无穷乘积。一般认为,韦达的这项工作是欧洲最早的有关无穷项圆周率的公式。虽然小编暂时没有考证到韦达最初是如何完成这项证明的,不过利用我们中学的数学知识基本可以完成证明。

沃利斯乘积,又称沃利斯公式,由英国数学家约翰·沃利斯于1655年发现。要严格证明这个等式步骤有些繁琐,所以我们借助欧拉处理巴塞尔问题时使用的技巧来证明这一等式。

上面提到的两个方法之所以比较有名,主要是因为提出的时间比较早。在实际计算过程中,人们更倾向于使用上面这个公式。它是由莱布尼茨于1674年发现,被称为格雷果里-莱布尼茨公式。不过有的小伙伴已经发现,这其实就是arctan函数的麦克劳林展开。由于太过于出名,相信大家已经烂熟于心,所以这里就不过多介绍公式的证明了。当x取1时,arctan函数恰好等于π/4,所以比起以往的算法更为简单。

不过特别提醒想要亲自计算的同学,虽然格雷果里-莱布尼茨公式看起来计算简洁,但其收敛速度非常慢,因此现在基本不会用此公式来计算圆周率。这里推荐一个印度传奇数学家拉马努金给出的公式。

UUID: e1ab5e2b-5414-45ca-a786-597c930e1e19

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院物理所公众号-pdf2txt/2020/中科院物理所_2020-03-14_「转」如何优雅地计算π?.txt

是否为广告: 否

处理费用: 0.0066 元