世界上几乎所有的现象,原则上都可以用量子力学的法则来描述。比如,不论是宇宙大爆炸时的粒子反应,还是生活中的化学反应,都可以用量子力学描述成不同粒子间的碰撞和散射。虽然这种说法看上去很简单,但是实际操作起来却寸步难行。因为大部分反应都涉及很多不同种类的原子,有的原子还会结合成分子,它们之间的作用力相互叠加以后,会变得非常复杂,物理学家很难搞清楚其中的细节。
当物理学家发现一个问题很难搞定的时候,通常都会对它进行大幅简化。比如,有的物理学家会想,我们不要一开始就研究那么多粒子,不如先研究一小撮儿最简单的原子,让它们来模拟那一群乱七八糟的粒子。物理学家认为,只有先把简单的问题搞定了,将来才能一步一步往里添加细节,让它慢慢还原成最初那个复杂的问题。
超冷原子气体确实给物理学家提供了很大帮助,但在大爆炸的问题上,这个模型好像有点儿简化过头了。这是因为,在现实世界的物理现象中,温度都比较高(相对于绝对零度附近来说),粒子的运动速度都会比较快。当它们碰撞和散射的时候,不一定都是面对面硬怼,大多数时候都是“擦肩而过”。
2019年3月11日,中国科学技术大学潘建伟及同事陈宇翱、姚星灿与清华大学翟荟、人民大学齐燃等组成的联合团队在《自然·物理》杂志上发表了一篇论文。在论文所述的实验中,他们成功地让大量钾-41原子在绝对零度附近,表现出了超冷原子气体中不太常见的一种高阶分波的相互作用:d-波相互作用。
在这次实验中,研究组在钾-41形成的超冷原子气体中,加入了8~20高斯的磁场。结果,当磁场强度达到16 ~20高斯之间时,超冷原子气体中钾-41原子的数量突然大幅减少。在量子力学中,随着温度降低,实验数据图中一个凹陷变三个,三个凹陷又变成一个的现象,正是d-波势形共振存在的标志。
当然,这次钾-41超冷原子气体的d-波势形共振实验只是一个开始。物理学家希望,他们将来能够在超低温实验中,发现更多不同类型的原子“擦肩而过”的现象,并逐渐搞清楚其中的物理规律。