叶军,1967年11月出生于上海,物理学家。现任职于美国科罗拉多大学博尔德分校、美国国家标准与技术研究院(NIST)以及二者共建的天体物理联合实验室(JILA)。从事光与物质的相互作用的前沿研究,包括超冷原子-分子、量子精密测量、量子光学等领域。曾获得2022年度基础物理学突破奖、2020年度墨子量子奖。
2023年9月22日,叶军做客墨子沙龙,回顾了光学原子钟的发展历程。演讲文字由张浩然整理。叶军很高兴到墨子沙龙来作报告,早就听说了墨子沙龙的大名。我算是半个上海人吧,此次能回到上海来和大家,尤其是中学生见面,感到很荣幸。今天我报告的主题是美国天体物理联合实验室(JILA)锶原子钟的简要历史,希望大家可以享受这段历史。
量子力学的两个原理:确定和不确定。就像墨子一样,物理学家玻尔也是一个哲学家。
玻尔做过的很多工作都不是基于数学的推导,而是基于他的物理直觉。我们知道海森堡通过数学推导出了不确定性原理;但是玻尔却通过直觉得出关于互补性、宇称等等的信息。我想跟你们分享一下量子力学的两个原理。一个是确定性原理——你可能从来没有听说过确定性原理,因为这是我自己编出来的,不过这是正确的。原子中的电子按照一定的轨迹围绕着原子核运动,这些轨迹可以很精确地由量子力学描述。
这是原子核的电子轨道的图片,与这些轨道相关的是非常精确的能量。我们之所以可以搭建精确的原子钟,最关键的原因就是量子力学的确定性原理。另外一个更著名的原理是不确定性原理。当测量一个围绕着原子核运动的电子时,如果你想知道在经过一段确定的时间之后,这个电子是在什么位置;或者对于电子的轨道而言,它是处于基态还是激发态。当你进行测量的时候,就有了不确定性。这就是自然的基础噪声。
我总是说,在这个世界上,一切事情都是确定性的;唯一不确定的是量子物理。真正的噪声来自于量子物理,经典物理学中没有真正的噪声。这两个看似冲突的原理,确定性原理和不确定性原理,构成了量子物理学的两大基础。各种量子通信、量子计算、量子计量学实验室的一切工作,归根结底都是操控量子噪声。而对于接下来我要介绍的原子钟,克服量子噪声同样是最重要的一件事情。
时间尺度:从原子到宇宙。
既然这次是介绍原子钟,那么首先来了解一下一些关于时间尺度的基本概念。电子绕着原子核运动的速度非常快,大概是每秒1015次,也就是一千万亿次。这里我们谈论的时间尺度是一飞秒,也就是10-15秒。另一方面,我们知道,宇宙的年龄是一个非常宏观的时间尺度,大概是1018秒。如果你对这两个时间尺度取一个几何平均数,也就是它们把相乘再开平方根,得到的结果大概是一分钟。
巧合的是,我研究的锶原子的量子相干叠加态的寿命也大约是一分钟。当然,这仅仅是一个巧合。
提升精度的法宝:光晶格。我们都知道时钟在日常生活中是极其重要的。很多人今天都通过GPS导航来到现场,而GPS的工作原理就依赖于极其精密的原子钟。然而,时钟的重要性不止于此。在日常生活之外,时钟作为一种科学的工具,在引力波探测、暗物质探测和大地测量学中都有着重要的应用。
如今的时钟早已不仅仅是一个计时的设备,它已经成为了我们的望远镜或显微镜,让我们发现很多之前从未见过的事物,探索未解之谜。在这样的背景下,怎样提高时钟的精度自然成为了人们关注的问题。对于量子计量学,特别是原子钟而言,精度的提高有几个关键点。首先是激光。我们没法直接用肉眼来观察原子,因此为了观察原子中的电子是怎样运动的,我们需要一个工具。这个工具就是激光。
为了读出原子的量子态,我们必须要制造非常稳定的激光。第二点,由于我刚才提到的量子噪声,我们希望在实验中使用的原子数量越多越好。这是因为噪声通常与原子数平方根的倒数成正比。通过增大实验中使用的原子数量,我们就可以用平均的办法来减小噪声。第三点则与第二次量子革命有关。对多体系统的量子纠缠的研究可以说是第二次量子革命。对于多体纠缠态,单个粒子的噪声可以被极大地减小,这样就可以提高测量的精度。
这张图片展示了二战后计时技术的进步。蓝线表示的是微波钟的发展,红线表示的是光学原子钟的发展。在半对数坐标下,两条技术路线的发展具有不同的斜率。通常,当先进的新技术取代了旧技术时,斜率就会发生变化。现在光学原子钟的测量精度已经达到了10-19,但科学家并未就此满足。在接下来的几十年内,原子钟的发展将推动更多科学发现的涌现。
更高的测量精度将有望让我们通过新的现象增进对量子物理的理解,而对量子物理的新理解反过来又可以促进实验技术的发展,让我们的测量精度进一步提高。
光学原子钟的发展:站在巨人的肩膀上。光学原子钟的发展绝非一蹴而就,而是依靠着一代代人的努力,以及国际上各个研究组之间的良性竞争。回顾历史,光学原子钟的发展过程中,我们始终站在巨人的肩膀上。
我来自一个叫做JILA的研究机构,它是一个由科罗拉多大学和美国国家标准与技术局(NIST)设立的联合机构。JILA已经成立了大约有六十年。我在上九十年代末期来到JILA,并在2000年代初得到了正式教职。在此之前的事情,我并不了解太多。但我可以从我在JILA的博士导师——约翰·霍尔讲起。约翰·霍尔在上世纪七八十年代制作出来世界上最稳定的法布里-珀罗腔。
法布里-珀罗腔用于稳定激光的频率,其结构非常简单,最主要的就是两面镜子。但约翰·霍尔毕生都致力于让这两面镜子之间的距离变得更加稳定,这样就可以得到频率最稳定的激光。他发展的这项稳定激光频率的技术,不仅使他之后获得了诺贝尔奖;更开启了光频标,乃至引力波探测等研究的整个领域。
我的研究历程:新千年后的梦想与努力。在大约2000年的时候,我被JILA聘为青年教授。
我曾经是JILA的学生,后来去了位于帕萨迪纳的加州理工学院。我在那里呆了两年时间,然后2000年的时候回到JILA成为教授。在那一年,一切事情都在日新月异地发展着。也正是在那时,我有了一个梦想,有没有可能利用这些已经在实验室里实现了的技术,用光阱束缚住原子,让它们免受扰动的影响,从而获得非常长的量子相干时间。或许这是一种实现原子钟的新的方法。在这样的背景下,我们开始了研究。
要把这种梦想变为现实,有一个非常关键的问题需要解决。我们希望把原子囚禁住,但是当囚禁这些原子时,会对原子的能级有扰动。这就意味着当我用光晶格来囚禁原子时,会有频率的移动,从而导致原子钟变得不准确。为了解决这个问题,我们寄希望于用魔术波长的激光作为光阱。魔术波长可以在囚禁住原子的同时,对原子的能级没有扰动。幸运的是,2000年,当我启动研究时,在JILA有一位优秀的理论物理学家,克里斯·格林。
他是JILA的另一位研究人员,致力于各种关于原子结构的计算。他为我找到了魔术波长。这是十分重要的,因为在魔术波长下基态和激发态有完全相同的势场形状,从而避免了两个态之间的跃迁频率发生改变。
观察原子的工具:激光。下面我想要跟大家讲一下量子物理和激光的关系。把原子放在基态和激发态的相干叠加需要激光;在叠加态演化一段时间之后,我们可以再打一束激光,来看看这个原子演化了多久,也就是这个时钟走了多久。
这就是我们怎样测量时间的。为此,我们需要非常非常稳定的激光。我们使用了非常低膨胀率的玻璃材料来制造非常稳定的激光。这项技术由JILA和PTB(德国联邦物理技术研究院)联合研发,使用石英这种非常坚固的的晶体结构,我们实现了非常稳定,也即相干性极好的激光。如果没有大气层的话,这束激光可以在地球和月球之间跳跃一百多次之后仍然可以让你分辨它目前处在哪个周期,是波峰还是波谷。
在未来,我们希望激光的相干长度可以进一步提高到地球和太阳之间的距离——这一距离光需要走八分钟,被称为一个天文单位。这种技术会非常有应用价值。我们可以通过这个技术,把两个卫星之间的距离控制在仅差几个激光波长的水平上,从而可以利用这一点建造综合口径雷达和综合孔径望远镜,来探索宇宙的边缘。
量子多体物理:理解越深,精度越深。下面我来讲一下量子多体物理,让我们从原子间相互作用谈起。
如果你有一个非常昂贵的手表,那你肯定怕把它摔坏了。同样的道理,如果原子钟的两个原子彼此碰撞,这也不是一件好事,会导致原子频率的移动。那我们如何控制这一点呢?这是故事里面很有趣的一部分,和量子统计学有关。你们在大学的量子力学课上会学到,但我现在想告诉你们一点点量子统计。大家可能玩过台球。如果给你两个普通的球,11号球和12号球,你击打它们,让它们彼此碰撞,12号球往上走,11号球往下走。
可是如果我给你两个完全一样的球呢?你怎样区分是哪个往上走了呢?在量子力学中,对于全同的粒子,如果你没法区分哪一个往上走了,那这两种可能性都存在。这就是量子力学的魔法之处。你需要考虑每一种可能性,并且把这些可能性加起来。自然界中有两种粒子——一种叫做玻色子,另一种叫做费米子。玻色子喜欢聚在一起,这也是为什么我们可以实现玻色-爱因斯坦凝聚。当两个玻色子聚在一起的时候,它们的波函数中间是一个加号。
而对于玻色子,如果左边粒子的波函数和右边粒子的波函数是相同的,则它们总的波函数是单个波函数的两倍。而费米子是不同的,当你用波函数描述两个费米子时,它们的波函数中间是一个负号。这个负号带来的结果是什么?它告诉你,当两个费米子相遇时,它们想彼此回避。因为如果他们彼此重叠的话,这个负号会让波函数会变成零。我们可以利用这个原理来制造原子钟。我们使用费米子,因为我们不想让这些原子彼此相聚、碰撞。
这是一个非常简单的出发点。然而大自然总是喜欢和我们开玩笑。即使费米子不会彼此聚集、重叠,它们仍然可以互相围绕着转圈,这仍然会导致一个频率的移动。这就是原子间相互作用产生的效应。当在光晶格中有许多原子时,这些原子彼此之间都会有相互作用。每个原子都可以看做一个小的赝自旋为1/2的系统,N个原子就是N个赝自旋为1/2的系统。这N个原子的总波函数可以用一个巨大的自旋N/2来描述,我们称之为集体自旋。
这会形成一个巨大的球面,并且会导致巨大的量子噪声;但这个球上的矢量也会变得更长。集体自旋产生了一些有趣的量子噪声的动力学效应,也会导致原子钟中的频率移动。我们需要理解这些自旋之间的所有量子的相互作用——这实际上就是磁性的微观机制。因此,量子磁性和原子钟这样的量子精密测量也联系了起来。2016年,因为对这些相互作用效应有了进一步的理解,我们的原子钟达到了2×10-18的精确度。
如果这个时钟从宇宙诞生起就工作,直到今天,它的误差也不会超过一秒。可我们怎样才能做得更好呢?
结语。这是我们实验室的一幅照片,在经过了艰难的努力之后,这个年轻的学生甚至无法相信自己搭建了一台如此复杂的实验装置。对于从事科学研究的青年学生来说,当你们用自己的双手,搭建了最好的实验装置,从来没有人搭建过的实验装置。你们应当为自己感到骄傲,以及你可能发现的科学突破感到敬畏。
制作原子钟并不是科学家的自娱自乐。虽然对我来说,在实验室自娱自乐确实是我的工作的最重要的一部分。但实际上这是一个非常重要的工作。国际单位制下的七个基本单位中,秒在其中有重要的作用——它定义了其他六个基本单位钟的五个。在工业生产、通信、计算、网络、科学研究等方面,时间都有着非常重要和实际的作用。