黎曼猜想被证明了?仍是一个猜想?震惊数学界的两大新闻!

作者: Aprilis

来源: 原理

发布日期: 2018-09-22 13:23:10

本文讨论了黎曼猜想和abc猜想的证明问题,特别是数学家迈克尔·阿蒂亚和望月新一的工作,以及他们的证明方法所面临的挑战和争议。

黎曼猜想被证明了?还无法确定。今天收到了许多读者的留言询问黎曼猜想是否被证明了,这是因为著名的数学家迈克尔·阿蒂亚宣布将在9月24日的海德堡获奖者论坛上公布自己证明黎曼猜想的方法。

在没有获得更多的信息之前,我们还无法知道黎曼猜想是否被证明了。但无论结果如何,这都是值得期待的一天。而另一个重磅新闻,也是今天将着重讨论的主题,则是曾经轰动一时的abc猜想的证明——它似乎正在面临史上最大挑战!

2012年,日本京都大学的望月新一在四篇总长度超过500页的论文中,提出了数论中最深远的问题之一——abc猜想的证明方法。但是,几乎没人能看懂他的论文,因为他采用的是自己发展起来的数学工具。

虽然有十多名深入研读过这个证明的数学家认为它是正确的,但是数学家Brian Conrad在去年十二月的博客讨论中评论说,断言证明正确性的只有"望月圈子"里的数学家,而其他人即使是在非正式的情况下,也没有愿意表达他们相信望月新一的证明是完备的。

现在,事情出现了转机。Scholze和Stix称,在望月新一四篇论文中的第三篇的"推论3.12"中,其证明结尾处有一行论证是根本错误的。而这一推论是望月新一abc证明的核心。

abc猜想是数论领域中最重要的难题之一,是最初由法国数学家Joseph Oesterlé和英国数学家David Masser在1985年提出的纯数学问题。它的名字源于一个简单的方程a+b = c,但它包含了对数的自然属性最深刻的探寻,直击数的基本性质。

数学家通常使用"推论"来指之前的更重要定理的次要结果,但是对于望月新一的推论3.12,数学家认为这是证明abc猜想的核心,如Calegari曾写到的那样,若没有这个推论,"就根本没有证明,这是关键的一步"。

Scholze和Stix表示,这个证明涉及处在实数的两个不同拷贝内观察两个集合的体积,然后,实数的这两个不同拷贝又被表示为实数的六个不同拷贝组成的圆的一部分,同时还包括解释圆上的每个实数拷贝如何与近邻联系的映射。为了追踪集合的体积如何彼此联系,必须理解不同拷贝下的体积测量如何联系。

望月新一争辩说,更为微妙的事情恰好是这个证明所做的。他写道,Scholze和Stix的错误在于,他们对本应被视为互不相同的数学对象进行了任意鉴别。

数学家现在必须吸收Scholze和Stix的论证和望月新一的回应。但是Scholze希望,与望月新一最初的一系列论文的情形不同,这个论证不应该是一个旷日持久的过程,因为他们的反对证明技术性并不是很强。其他数论学家"完全能够跟上这一周我们与望月新一的讨论"。

UUID: 3c20633a-a121-46a1-a0f1-5d29c64df13b

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院物理所公众号-pdf2txt/2018/中科院物理所_2018-09-22_黎曼猜想被证明了?abc仍是一个猜想?震惊数学界的两大新闻!.txt

是否为广告: 否

处理费用: 0.0074 元