下一个牛顿会是AI物理学家吗?

作者: 二宗主

来源: 原理

发布日期: 2018-11-08 10:42:09

麻省理工学院的两位物理学家Tailin Wu和Max Tegmark创造了一个AI物理学家,能够在模拟宇宙复杂性的神秘世界中梳理出物理定律,这标志着AI在科学发现中的重要进展。AI物理学家通过分治法、奥卡姆剃刀、统一和终身学习等策略,成功推导出多种环境下的物理定律,并显示出比传统机器学习算法更高的准确性。这一成果可能对未来科学研究方式产生重大影响。

上周,来自麻省理工学院(MIT)的两位物理学家Tailin Wu和Max Tegmark创造出了一个AI物理学家,能够在一些为了模拟我们宇宙的复杂性而创造出的神秘世界中梳理出物理定律。这标志着我们朝着创造出不仅能发现模式、还能从这些模式中对未来进行预测的机器学习算法迈出了重要一步,为完全由AI来完成科学发现奠定了基础。

在这个神秘世界中,视场被分为四个象限,每个象限都受不同的物理效应的支配,比如引力(左下)或电磁场(右下)。点和线代表球在环境中的轨迹。基于球如何在环境中运动,AI必须使用它被给予的策略来描述支配球运动的物理定律。当给AI一个数据集时,它能对这个数据集进行分析从而创建一个模型。模型的功能取决于具体的任务。

例如,假如你想要训练AI对猫进行识别,那么可以给它展示数千张猫的图片,这样算法就可以从每张照片中找出相似特征,从而归纳出一个猫的模型。AI创建模型的方式,有点像科学家通过理论,从一个现象的特定事例,类推到这一现象在类似情况下的所有事例的方法。但是,这二者之间也存在一个关键区别。

对于研究机器学习的科学家来说,训练AI如何对数据进行分区,创建出能最终加在一起的小模型以获得更大的模型,是一项非常艰巨的挑战。Tailin Wu和Max Tegmark在arXiv上发表的论文中详细描述了他们如何运用“AI物理学家”,朝这一方向迈出了重大一步。为了实现这一目标,Tegmark和Wu的机器学习算法具有四种策略,这四种策略也同样可被人类科学家所采用,以对复杂的观测推导理论。

这几个策略分别是:1. 分治法:开发只能描述数据集的一小部分的理论,从而产生多种理论,不同的理论能各自描述数据的不同方面,比如物理学中的量子力学和相对论。Wu和Tegmark开发的AI物理学家,就以这样的方式处理大的数据集。2. 奥卡姆剃刀:这是物理学家采用的另一个普遍规则,即越简单的解释越好。AI系统的一个广为人知的特点便是,它能推导出过于复杂的模型来描述用于训练它们的数据。

因此,Wu和Tegmark也“教导”他们的系统,让它偏爱更简单的理论而不是复杂理论。3. 统一:另一件物理学家爱做的事情,就是寻找能将不同理论统一在一起的方法。若能将多个理论合而为一,那是最好不过了。这促使物理学家总在试图寻求一种能支配万物的法则(尽管几乎没有实际证据表明这种理论的存在)。4. “终身学习”:这是帮物理学家取得成功的最后一个策略。

如果一种特定的方法曾在过去奏效,那么它可能在未来的问题上也能奏效。因此,Wu和Tegmark的AI物理学家能记住曾学习过的解决方案,并尝试将它们应用在未来的问题上。在将这些策略编码到机器学习算法中之后,Tegmark和Wu向AI展示了一系列复杂程度越来越甚的虚拟环境,这些虚拟环境由奇怪的物理定律所支配,并让AI去理解它。它的目标是尽可能准确地预测物体在二维空间的运动。

这需要AI为每个“神秘环境”推导独特的物理理论,才能理解物体在该环境下的运动方式。正如Tegmark和Wu所发现的那样,随着环境变得越来越复杂,这位AI物理学家越来越难理解物理定律。最后,这位AI物理学家总共接触了40种不同的神秘环境,并能在超过90%的情况下,推导出支配这些环境的正确物理定律。此外,Tegmark和Wu的AI物理学家能够比传统的机器学习算法减少“十亿倍”的预测误差。

这一工作或许对人类在未来从事科学研究的方式产生重大影响。特别是它或许能极其有效的应用于理解大量复杂的数据集上,比如那些用于气候或经济建模的数据集上。或许,下一位即将到来的牛顿或爱因斯坦,将只是一些计算机代码而已?

UUID: 3075c0b9-fdd1-4433-beab-0c3afabca5cc

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院物理所公众号-pdf2txt/2018/中科院物理所_2018-11-08_下一个牛顿会是AI物理学家吗?.txt

是否为广告: 否

处理费用: 0.0045 元