中子虽小,但产生强中子束的散裂中子源却很庞大,是集合了各种高、精、尖设备组成的大科学装置。中国散裂中子源(CSNS)坐落于广东省东莞市松山湖畔。中国散裂中子源隧道内装置建在13米到18米深的地下,主要包括一台负氢离子直线加速器、一台快循环同步加速器、一个靶站、3台中子谱仪等。2011年9月开工建设,2018年8月,这一国之重器通过国家验收,成为世界上第四个脉冲散裂中子源装置。
中国散裂中子源90%以上的装置设备,由我国自主研发并实现了国产化。中国科学院院士、中国散裂中子源工程总指挥陈和生语气中带着自豪。他说,通过建造中国散裂中子源,显著提升了我国在磁铁、电源、探测器及电子学等领域的产业技术水平。
散裂中子源就像一台‘超级显微镜’,它是探测物质微观结构的重要手段。科学家介绍,物质的结构决定了物质的性质。同样由碳元素构成,金刚石坚硬,石墨润滑,就缘于它们的不同结构。为看清物质的微观结构,科学家设计了很多方法,利用中子散射探测是其中之一。
中子散射为何能看清微观世界?原子由原子核和带负电的电子构成,其中原子核又包括带正电的质子和不带电的中子。相比其他探测方式,中子能轻松地穿透物质。中子束打到被研究的样品上,虽然大多数不会受到任何阻碍,但有些中子会与研究对象的原子核发生相互作用,从而改变运动方向。通过分析中子散射的轨迹、中子和物质发生作用时能量和动量的变化,科学家就能反推物质的结构。
中国科学院高能物理研究所东莞研究部副主任梁天骄介绍,除中子散射外,观察微观世界还有同步辐射和电子显微镜等方式。其中,中子散射用的是中子,同步辐射借助的是X射线,电子显微镜则依靠电子。散裂中子源有其他方式无法替代的作用,它与同步辐射光源互为补充。
破解新材料、生命科学、化学化工等领域难题。1998年6月,德国一列高铁意外出轨。是车轮、轴承还是铁轨出了故障?分析事故原因时,科学家陷入争论。有人提出,用电子显微镜观察这些部件,但这需要用激光刀把金属部件切成小于1微米的薄片,几乎无法操作。借助中子散射技术,科学家找到事故的元凶——失事的车辆车轮内部的金属疲劳。
研究大型工程部件残余应力和金属疲劳,只是中子散射诸多应用中的一种。在生物医药领域,中子散射能够帮助科学家看清蛋白质的内部结构;在可燃冰的开发利用中,散裂中子源可用来研究可燃气体甲烷水合物的形成机制和稳定条件,为安全、高效地开采和利用提供科学依据。
中子散射能用于文物研究。想了解一尊佛像的制造工艺,但无法把它大卸八块,怎么办?利用中子成像技术,能清晰看到佛像的中间有一根木制“主梁”。这是因为中子散射对轻的元素非常敏感,中间的棍子是木头做的,也就是碳氢化合物,中子可以轻易地“看到”它。因此可推测出古代工匠在造佛像时,先在中间立一根木梁,然后在木梁周围缠上支撑架,最终用黏土制成。
中国散裂中子源投入运行以来,为多学科交叉前沿研究和高技术创新提供了先进的平台,获得了大批重要成果,成为粤港澳大湾区科技创新的重大科技基础设施。中国散裂中子源建成不久后,陈和生曾预言,松山湖畔将会成为科技创新的沃土。目前,中国散裂中子源就像一块磁铁,正吸引着科研人员慕名而来。
中国散裂中子源设计了20个谱仪孔道,目前一期仅建设了3台谱仪。同时,散裂中子源的建设涉及大量高技术,中国散裂中子源要加强与国内外科学家交流,推动相关应用和研究走向深入,力争为国家科技发展做出更大贡献。