3月14日,英国著名物理学家史蒂芬·威廉·霍金(Stephen William Hawking)在家中逝世,享年76岁。提到霍金,人们往往会想起他标志性的轮椅,以及那本畅销全球的《时间简史》。然而说起他的本职工作——物理学家,除了专业人士,恐怕很多人都不清楚他在科学上究竟做出了怎样的贡献。
记得霍金曾经在他的书中说到过,由于他身体的缺陷,他没有太多的精力去学习某一实际学科的具体知识,因此他尽量避免从事的具体、复杂的实际问题的研究,而是一直在做宇宙学和黑洞、量子引力等方面的抽象的理论研究。那么霍金究竟有哪些重要的科研成果?对物理学的发展起到了怎样的作用?且听小编娓娓道来。
1922年,弗里德曼(Friedmann)提出的宇宙学模型认为宇宙起源于一个奇点,称为大爆炸奇点(big bang singularity),这一点宇宙的密度将是无穷大,也被称为宇宙的原初奇异性。
1931年,天文学家钱德拉塞卡(Chandrasekhar)在推出白矮星的质量极限之后意识到大质量恒星的晚年命运有待进一步推测,但另一位天文学家爱丁顿(Eddington)却断然否定黑洞(包括时空奇点)存在。
1933年,奥本海默(Oppenheimer)等人把钱德拉塞卡的工作推广到中子星,指出质量足够大的球对称的恒星演化到晚期,由于中子简并压无法抗拒引力收缩,必然会无限收缩以致于坍缩到密度无穷大的一个时空奇点,稍后便给出了实质上是第一个描写黑洞形成的精确解。
然而霍金和彭罗斯(Penrose)在1965—1970年通过抽象的推理证明,以独辟蹊径的研究表明,即使不需要对称性的假设,大质量恒星晚期坍缩形成的黑洞和宇宙原初的奇异性在一定条件下都是不可避免的(详细内容可见Hawking&Penrose(1970)的论文)。
通俗来讲,奇性定理就是说,只要满足引力特别强、能量条件、因果条件等条件,黑洞是可以存在于我们的真实世界的,宇宙也可以诞生于一个奇点,不再只是纯理想的模型。
1972年霍金与Bardeen及Carter合作写了一篇关于黑洞力学(black hole mechanics)的论文,他们指出一个黑洞的力学性质可以用两个物理量来描述:黑洞视界的面积和视界表面的引力(surface gravity),这两个量分别类似于热力学中的熵和温度,因此也可以定义黑洞的熵和温度。
基于这种类似性,他们给出了相应于热力学四大定律的黑洞力学的四大定律,其中包括霍金在1971年发表的黑洞边界面积不减定理(也被称为霍金定理,也是黑洞力学的第二定律),其中黑洞的边界就是黑洞的事件视界(event horizon)(简称视界)。
1973年霍金在弯曲时空量子场论的研究中发现原来“黑洞不黑”!原本经典的理论上“一毛不拔”的黑洞在黑洞量子力学中也可以通过一定的机制发射黑体辐射,这就是霍金辐射!他指出,黑洞视界附近的引力场好像一个势垒,根据量子隧穿效应,黑洞内部的粒子是有一定的概率穿出这个势垒,形成粒子的发射。当视界附近的引力场足够强的时候,量子场论中的真空极化效应可以从真空中由能量转化为物质,产生一对正反粒子。
霍金在1971年以及1974年与他的学生Carr的文章中指出:当今星系的存在(并且就连星系都具有成团的结构)暗示着宇宙的早期也不会是绝对的均匀的,宇宙大尺度上是均匀和各向同性的,由于宇宙早期原初的量子涨落产生了极小的不均匀性(这一不均匀性已经得到了宇宙微波背景辐射的检验),同时由于引力的吸引,密度大的地方会聚集更多的物质,而密度稀疏的地方会变得更稀疏,并且这一不均匀性会随着宇宙的膨胀而不断被放大,有些区域可能变得足够致密得以至于不再是坍缩形成星系、星系团等等这样发光的恒星系统,而是直接通过引力的吸引而坍缩形成黑洞。
这些黑洞不需要通过大质量恒星演化到晚期而形成,也被称为原初黑洞。