引言:物理学家安德森在上世纪七十年代特别指出,“多则异也”(More is different),阐述了科学研究中多粒子复杂系统在不同尺度上演生的集体行为有别于个体和少体系统的现象,一定程度平息了科学研究中哪些领域更基本的争论,也被称为是凝聚态物理等领域的“独立宣言”。
在量子计算领域,经过多年的努力,我们也见证了量子比特数从初期个位数到现今两位数的增长历程,无疑比特数的增加还会继续,那么这种发展是一种单纯数目的增加,还是我们期望一种“多则异也”的从量变到质变或者演生行为呢?
2019年,谷歌量子计算团队发文宣称已经达到量子优越性(又称量子霸权,quantum supremacy),引起公众普遍的关注,这种进展可以被归入“多则异也”的一种内涵,即由于比特数的增加,其完成的计算能力不再被经典计算机所取代。有的量子多体物理问题由于计算规模的限制而不能解决,而多粒子的行为并不能由少粒子性质简单推广,如果这种问题在量子比特数增加的情况下有望解决,可为“多则异也”提供新的阐释。
研究内容:当一个强关联孤立系统引入足够强的无序时,该系统将不会体现出热化现象,即子系统的约化密度矩阵并不表现出各态遍历(ergodic)行为,这种现象被称之为多体局域化(many-body localization)。多体局域化在很多方面和安德森局域化类似,但不同之处在于其存在长程关联,或者更广泛的含义上属于“非可积系统”。过去几年相关课题进展很多,可以研究丰富的物理现象。
各态遍历的热化与多体局域化量子相之间的转变是一种非平衡量子相变,它关注的是高激发态的性质。为了更加清晰地研究这一量子相变,人们引入能量密度谱来区分一个量子态到底是高激发态还是靠近基态。多体局域化与能量密度谱之间的依赖关系引发了大家对多体局域化迁移率边界(mobility edge)问题的讨论,现有的基于严格对角化的数值计算给出了尺寸为24个量子比特左右的系统存在迁移率边界的证据。
尽管如此,一些研究者对迁移率边界在热力学极限下的存在性提出了争议。
展望:针对量子计算,美国政府首席技术官Michael Kratsios在《财富》(fortune)撰文指出谷歌已经取得了非凡的新成就,针对一些评论认为量子优越性的证明只是一项科学成就,而没有实用价值时指出:这一观点忽视了量子计算的惊人潜力,美国政府认为“无论量子计算的未来如何,我们知道它将是革命性的,它将在美国建成”。
无疑,世界各国都非常重视量子计算的研究,但有科学和实用价值的量子计算机研制任重而道远,并非一蹴即就。