电网系统里用不完的电都去哪儿了?很可能跑到这里了。21世纪工业革命的兴起,让化石燃料占据了人类经济活动的前端,但由于其带来的污染及不可再生性,人们开始将着眼点放在新能源的开发与利用上。在如今的21世纪,能源问题仍旧不可避免且刻不容缓。而能源的存储(简称储能),作为连接能量供给与消费的重要环节,在整个能源互联网中起着重要的作用。
不知道大家有没有想过这样一个问题:发电站在持续不断地发电,但我们的用电需求却有高有低。那在用电低谷时,会出现发电量大于用电量而导致电能浪费的情况吗?其实在正常情况下,电网系统自身是具备自我调节的能力的,可以最大程度上平衡发电量和用电量。但如果出现了发电量远超用电量,无法通过自我调节来实现均衡的情况,就要借助储能系统将多余的电量储存起来。
在诸多的储能方式中,有一颗冉冉升起的新星,这种储能方式所基于的元素,也是人体肌肉组织和神经组织中的重要成分之一……没错,它就是钠离子电池储能系统。2021年6月28日,中科院物理所与中科海钠在山西太原综改区联合推出了全球首套1MWh钠离子电池储能系统,并成功投入运行。
该系统以自主研发的钠离子电池为储能主体,结合市电、光伏和充电设施构成一个微网系统,能够实现自我控制、保护和管理;具有灵活的运行模式和调度管理性能,既能并入大电网运行,又能独立孤岛运行;联网模式下与大电网一起分担用户的供电需求,孤岛模式下保证用户尤其是重要用户的正常用电。
此次钠离子电池储能系统的成功研制,标志着我国在钠离子电池技术及其产业化水平走在了世界前列,同时意味着钠离子电池即将步入商业化应用新阶段。
钠离子电池作为一种新型二次电池(可充电电池),近些年的发展势头可以用“迅猛”一词来形容。为何要大力研发钠离子电池并努力做到产业化?这背后的原因和意义究竟是什么?
这还得从钠离子电池本身开始说起……钠离子电池的诞生早在1870年,法国著名小说家儒勒·凡尔纳就在其科幻小说《海底两万里》中描述了他心目中的钠电池。直到1968年,才出现了能在高温下运作、使用金属钠作负极,单质硫作正极的高温钠硫电池。由于工作温度高,可应用的范围就非常受限,所以为了降低其工作温度,拓展其应用领域,科学家们可谓煞费苦心。1979年,“摇椅式电池”的概念被提出。何为摇椅式电池?
指的是电极材料中的离子可以在电压的驱动下于正负极间来回迁移,就像摇椅可以前后摇晃一样。自此,钠离子电池的雏形开始显现,并逐渐发展成今天的模样。
钠离子电池的工作原理和锂离子电池一样,钠离子电池的主要结构也包括正极、负极、电解质、隔膜、集流体等,只是电池内传导的不再是锂离子,而是钠离子。正负极被电解质浸润以保证离子导通,隔膜用以将正负极隔开防止内短路,集流体则起收集和传导电子的作用。
充电时,钠离子从正极脱出,经电解质嵌入负极,电子经外电路由正极向负极迁移,实现能量的存储。放电过程与充电过程相反,实现能量的输出。正常情况下,钠离子在正负极材料的嵌入脱出不会破坏材料的晶体结构,使得反应高度可逆,从而保证电池可以反复使用。
钠离子电池的优势包括钠资源储量丰富、更廉价的电极材料、低浓度电解液、更廉价的集流体、更优的倍率性能、高低温性能、更高的安全性等。
钠离子电池显示出了比锂离子电池更优的倍率性能,即可以在短时间内充满电且容量保持率高。高低温性能即电池可以正常工作的温度区间。相比锂离子电池,钠离子电池可以在低至约-30℃、高至约80℃的环境中正常工作。在安全性测试(加热、过充、短路、跌落、针刺、海水浸泡等)中,钠离子电池能做到不起火爆炸,展现出良好的安全性能。
中科院物理所自2011年致力于低成本、安全环保、高性能钠离子电池技术开发,目前已在正负极、电解质、添加剂和粘接剂等关键技术方面申请了50余项发明专利(已授权30余项,其中3项获得美国、欧盟和日本授权),在Science正刊、Nature、Science子刊及Joule学术杂志发表论文10篇,出版《钠离子电池科学与技术》专著一本。不仅如此,团队还牵头制定了国内首个钠离子电池团体标准。
2017年,陈立泉院士提出“电动中国”构想,钠离子电池产业化势在必行。团队于同年成立中科海钠公司——一家专注于钠离子电池技术研究与生产的高新技术企业,现已建成钠离子电池百吨级材料中试线及百万安时级电芯线,正在山西太原建设年产2000吨钠离子电池正、负极材料生产基地;研制生产出软包、铝壳及圆柱电芯约15万只,综合性能处于国际领先水平,为钠离子电池的商业化奠定了坚实基础。
从2015年习近平总书记提出“构建全球能源互联网”,到2020年我国向世界郑重宣布“碳达峰、碳中和”的双碳目标,对可再生能源的加快推广提出了迫切要求,也为钠离子电池的持续发展提供了巨大空间。我们有理由坚信,未来钠离子电池的发展能取得更大的进步!