机器学习是如何区分猫和狗的?

作者: Chris Budd

来源: 中科院物理所

发布日期: 2018-12-18 12:11:17

本文详细介绍了机器学习的基本原理及其在区分猫和狗等任务中的应用,包括模式识别、神经网络和深度学习的概念,以及不同类型的学习方法如监督学习和强化学习。

机器学习是如何区分猫和狗的?

原创 Chris Budd 中科院物理所 2018-12-18 12:11:17 收录于话题 # 翻译专栏 科学无国界 我们是知识的搬运工 《生命是什么》是浙江大学教授、科普作家、“文津图书奖”“吴大猷金奖”“菠萝化学奖”“全球华语科幻星云奖”得主王立铭最新科普力作。

本书通过生动的文笔和有趣有料的生物学故事,揭开了生命科学神秘的面纱,不仅生动地解读了生命的定义及奥秘,而且详细地追溯了生命的起源和演化,展现了人类探索生命奥秘的伟大历程,讲述了科学家在揭示生命奥秘过程中的重要发现。

最近人工智能方面最重要的发展之一就是机器学习了。它主要着眼于智能,而不是传统计算机程序意义上指定机器做什么东西,也就是说机器自己可以学习,这样它就可以直接从经验(或者数据)中学会如何处理复杂的任务。

即使是很简单的机器学习算法也能区分照片上的猫和狗。

伴随着计算机速度的提高和算法的进步,机器学习的发展也非常迅速。从中衍生的算法已经对我们的生活造成了深刻的影响,而且有时候比人类做得更好。那么问题来了,机器学习到底是如何工作的?

在一个机器学习系统中,计算机通过自己给自己编代码来完成一个任务,它一般是由基于这个任务的大量的数据来训练的。其中很大一部分涉及识别这些任务中的模式,然后根据这些模式做出决策。

为了让机器学习的过程更加透明化,我们用开发可识别手写数字的机器的非常具体的例子来考虑模式识别的问题。这样的机器应该能够做到:不管一个手写的数字写得怎么样,它都能识别出来。

数字识别有两个阶段。首先,我们把图像扫描进机器,然后从数字图像中提取重要的数据信息。这通常使用主成分分析(PCA)的统计方法,它可以自动提取一个图像的主要特征,比如高度和宽度,再比如图像中的交叉的点的个数,等等。

第二,我们要训练机器利用这些提取的信息来学习辨别数字。完成这个过程的一个很普遍的方法就是神经网络。这个技术基于我们对大脑如何工作的认识。第一步是,创造大量的“神经元”并把它们互相连接。这些神经元可以互相发送信息。第二步,让神经网络去求解大量的结果已知的问题。通过这个过程,它就“学会”了神经元之间应该如何连接,所以它就能成功地识别数据中哪些模式可以产生正确的结果。

简单的感知器可以被训练做很多简单的任务,但很快就达到它的极限了。很明显,通过将许多感知器耦合在一起可以实现更多,但这种发展必须等待更强大的计算机的出现。

当感知层连接在一起产生神经网络时,取得了重大突破。这种神经网络的典型结构如下所示。

不同的方法现在我们再来关注学习过程的更多细节。对于一个神经网络来说有很多不同类型。

在有监管学习中,由网络的使用者预先提供一组示例输入和输出对。然后,学习方法要找到一个神经网络,该网络提供与示例匹配的输出。将神经网络的输出与示例的输出进行比较的常用方法是找出正确输出和实际输出之间的均方误差。然后训练网络以使该误差最小化。

在强化学习中,数据不是由用户预先给出的,而是由神经网络控制的机器与环境的相互作用及时产生的。在每个时间点,机器对环境执行动作,该动作产生观察以及该动作的成本。训练网络使它可以选择最小化总成本的动作。

随着更快的训练算法和越来越多的数据的推动,诞生了更复杂、更深层次的网络,这让机器学习进展迅猛。

原文链接: https://plus.maths.org/content/what-machine-learning#video

UUID: bd48d97d-8c35-4a12-8281-6be796fa5662

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院物理所公众号-pdf2txt/2018/中科院物理所_2018-12-18_机器学习是如何区分猫和狗的?.txt

是否为广告: 否

处理费用: 0.0053 元