目前,凝聚态物理学界对于拓扑半金属的理论和实验研究都如火如荼,在这些研究中通常都是基于第一性原理计算的理论预言走在前面。为了确定拓扑能带交叉的形状和位置,物理学家必须计算布里渊区中所有的点,甚至需要借助其他方法来确认能带交叉的类型,例如威尔逊环。确认高对称点上是否有能带交叉的计算相对容易,但确认非高对称点上的能带交叉的计算则会消耗大量的时间和计算资源。
即便如此,非高对称点上的能带交叉依然很容易被漏掉。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心理论室副研究员方辰和博士研究生宋志达、张田田的研究在很大程度上解决了这一难题。他们的研究指出:在自旋轨道耦合可忽略的非磁性系统中,一般位置上的拓扑能带交叉的存在性以及性质都可以由少数高对称点上的对称操作的本征值给出,例如能带交叉类型(点或者线)、拓扑荷、能带交叉数量、形状、位置。
有了能带拓扑和能带表示之间的判据,物理学家只需要几个高对称点上的能带对称性数据就可以得到该材料的拓扑不变量以及能带交叉点的存在性以及性质。这一理论大大简化了识别拓扑材料的艰巨任务,为高通量搜索拓扑半金属铺平了道路。目前该工作已经发表在《Physical review X》上。本工作基于最近提出的拓扑量子化学、对称性指标等理论。
文献系统地研究了原子绝缘体的能带连接关系,又称为“相容性关系”,并指出如果一组能带不能分解为原子绝缘体的对称性数据,那么这组能带必定是拓扑非平庸的。如果一组能带满足文献中提出的相容性关系,那么这个系统要么是有能隙的绝缘体,要么是在非高对称点有能带交叉的半金属。文献则指出任何在高对称线上有直接能隙的系统,其价带对称性数据都可以压缩为几个对称性指标,这些对称性指标的取值为一些有限的整数。
文献在文献的基础上给出了有自旋轨道耦合的非磁性系统的对称性指标与拓扑不变量之间的具体关系,也称为“拓扑字典”。本文致力于完成在自旋轨道耦合可忽略的、满足兼容性关系的非磁性能带系统中,研究其对称性指标与拓扑不变量之间的映射关系。首先,作者推导出了所有有对称性指标的空间群的公式;其次,对于每一种对称性指标都列举出其对应的能带交叉点的类型、形状、数量、位置以及拓扑荷。
这里以2号空间群的CaP3为例来演示如何使用对称性判据:第一步,计算CaP3高对称点上占据态能带的对称性数据,这一步可以由第一性计算软件完成;第二步,把对称性数据代入附件公式(4)中计算对称性指标,得到(0101);第三步,查找附件中表3,发现2号空间群(0101)对应的能带交叉是一个节点环的形状,围绕在高对称点Y且无拓扑荷。