“拐弯”的光,带领人类刷新了对宇宙的认知

作者: 魏凤文、武轶

来源: 中科院物理所

发布日期: 2023-03-09 11:29:32

本文讲述了光受到引力作用而弯曲的现象,以及这一现象如何促使爱因斯坦建立广义相对论,并通过实验验证了这一理论。文章详细描述了历史上对这一现象的探索过程,包括牛顿、索德纳和爱丁顿的贡献,以及1919年日食观测的重大意义。

光有“重量”吗?它受不受引力的作用?这个问题曾引起许多著名物理学家的好奇心,正因为对它不懈地思索,促使爱因斯坦建立著名的广义相对论,而对这个问题的实验观察,又使广义相对论的正确性得以验证。

早在300多年前,牛顿曾经设想光是由粒子组成的,他不仅用光的粒子性解释反射和折射现象,还认为像一切物体那样,光也可能受到引力的吸引,在引力场中是有“重量”的。1704年,牛顿在他的《光学》一书中写道:“物体能隔着一段距离对光有作用吗?这种作用会不会使光线弯曲?当距离最小时,这种作用也最强吗?”虽然牛顿没有进一步计算,但这席话激起了人们对这一问题的兴趣。

1801年,德国天文学家约翰·索德纳做了详细的计算,他得出光线在太阳引力作用下的弯曲量,可是这个量实在太小,以致在当时找不到足够精确的仪器,也没有那么精良的照相设备,验证这个结果几乎是不可能的,因而没有引起人们的注意。

还有另外一位对光线引力弯曲感兴趣的人,这就是英国著名的天文学家阿瑟·爱丁顿。他设想光线掠过太阳时,就像一颗颗光粒子掠过太阳。在太阳引力作用下,这些粒子的轨迹会发生弯曲。他利用牛顿引力理论进行计算,所得到的结果是,在光线经过太阳之后,光线弯曲0.9弧秒。这个数值仍然太小,相当于光线传播5千米,只有一个拇指宽度的偏斜量。

就在这一时期,爱因斯坦创建了广义相对论,得到了引力场方程。根据这个方程,爱因斯坦也对光线受到太阳引力产生的弯曲进行了计算,得出来的结果与爱丁顿的结果相同。但这是爱因斯坦利用他最初那个不完善的引力方程算出来的。当爱因斯坦完善了他的引力场方程后,所计算出来的光线弯曲量比原来增大了一倍,也就是1.8弧秒。他建议天文学界对这一现象进行实地测量。仿效牛顿,他也把这个观测叫做“光线称重”的实验。

1917年,正在英国剑桥的爱丁顿注意到爱因斯坦的建议,他立刻意识到这一实验的重要价值。爱丁顿是一位杰出的天文学家,不仅谙熟物理,对数学也很精通,当世界上绝大多数物理学家还不能读懂爱因斯坦的理论时,他很快能读懂,更洞见出这一理论在物理学和天文学中的重要价值。

特别是当他得知,爱因斯坦计算出太阳引力弯曲值是他计算值的两倍时,立刻意识到这个数据将是爱因斯坦对牛顿的挑战,验证这个值,恰好能在两个引力理论中,鉴别哪一个正确。

1919年5月29日日食发生的当天,测量队架设好天文望远镜和照相设备,一次举世瞩目的天文学壮举就这样开始了。然而那一天并不顺利,天公不作美。在普林西比岛,云将太阳遮住,无法捕捉到太阳背后的星光。由于天气不好,在普林西比岛的观测结果中,只有两张底片可以得到测量数据。它们给出的结果是,从遥远星光发出的光线在太阳引力作用下弯曲了1.61弧秒,与爱因斯坦的结果很接近。

1919年11月6日,英国皇家天文学会在伦敦举行盛大庆典,爱因斯坦的理论被证实的消息正式公之于众。英国皇家学会会长,诺贝尔奖得主J.J.汤姆森庄重地指出,这是“人类思想史上最伟大的成就之一。这一发现,不是找到了一个孤立的科学理论,而是发现了科学思想的新大陆。这是自牛顿查明引力定律以来,和引力相关的最伟大发现。”

从20世纪末到21世纪10年代,光线引力透镜效应已经是近代天文观测不可缺少的手段,以哈勃空间望远镜、斯皮策红外线空间望远镜及钱德拉X射线观测台为首,一个大型天文观测目标正向宇宙深度进发。天文学家利用发自遥远星系背后各种波段射线的引力偏移,可以推断遥远星系的质量,探索遥远星系周围庞大的暗物质云,甚至发现更年轻星系的生成过程,由此推知宇宙星系形成初期的情景。

UUID: 0755946b-e1a0-4fa7-aab7-700639cf4bb0

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院物理所公众号-pdf2txt/2023/中科院物理所_2023-03-09「转」_会“拐弯”的光,带领人类刷新了对宇宙的认知.txt

是否为广告: 否

处理费用: 0.0067 元