和人一样,自然的规律也喜欢“成双成对”。在格点规范场论中,Nielson-Nanomiya定理(或称Fermion doubling theorem, 费米子重叠定理)就是保证不同手性的费米子总是成双成对出现的一个重要概念,具体一点来说,就是在一个局域的,厄米的,以及平移不变的格点规范场论中,不同手性的费米子总是成对出现的。
过去的十多年,Nielson-Nanomiya定理在拓扑能带理论的发展过程中发挥了非常重要的作用,它保证布里渊区中拓扑荷总是成对出现的。比如对于一般的拓扑半金属,能带简并点总是成对出现;与此对应,每个能带简并点都可以定义一个拓扑荷,例如在外尔拓扑半金属中,拓扑荷可以定义成围绕外尔点的陈数(Chern number)。
如图1所示,Nielson-Nanomiya定理保证了这些拓扑荷在整个布里渊区中求和一定等于零。有趣的是,对拓扑材料来说,Nielson-Nanomiya定理可以在材料的表面被破坏,这个破坏恰好反应了材料的拓扑结构。比如在时间反演不变的拓扑绝缘体的一个表面上,狄拉克点可以单独出现,出现这样的表面态和体态的能带拓扑是一一对应的,这就是拓扑能带理论中著名的体边对应。
Nielson-Nanomiya定理在非厄米拓扑系统中还成立吗?近年来,得益于人造材料和光子晶体的实验发展,非厄米系统受到了越来越多的关注,这个问题也很自然地成为非厄米系统的一个基本物理问题。非厄米系统中有一类被称为奇异点的特殊简并点,过去的研究已经表明在非厄米系统中依然可以定义奇异点的拓扑荷。
但值得注意的是,过去针对非厄米系统拓扑荷的推广公式,并不能推导出有关奇异点的Nielson-Nanomiya定理。
最近,中国科学院物理研究所/北京凝聚态物理国家研究中心凝聚态理论与材料计算重点实验室T06研究组胡江平研究员指导的博士生杨哲森(现卡弗里理论科学研究所博士后),与德国马普所的Schnyder研究员以及卡弗里理论科学研究所的邱靖凯研究员合作,借助于数学中关于多项式判别式的概念,得到多能带非厄米系统奇异点的普遍定义,并且证明了奇异点满足Nielson-Nanomiya定理,即,奇异点总是成对出现的,并且进一步指出过去研究的拓扑荷并非奇异点的性质,而是有关费米点的性质,澄清了费米点和奇异点之间的差别(图2)。
文章还进一步探讨了Nielson-Nanomiya定理在三维材料表面被破坏的情况,并澄清了诸多关于奇异点的特殊性质,为研究非厄米系统中有关奇异点的物理奠定了理论基础。相关研究成果发表于Phys. Rev. Lett. 126, 086401 (2021),并被选成期刊编辑推荐的文章。