夏天真是让人又爱又恨的季节,小编早早就准备好了空调、Wi-Fi、西瓜夏日消暑标配神器。酷暑难耐,想必很多人和我一样,半条命都是空调给的。不过大家有没有想过温度是如何降下来的?
最简单的方式当然是扇风。虽然吹风不能使空气的温度降低,但是空气的流动会加速皮肤表面汗水的蒸发作用,从而将体表的热量带到空气中,达到散热降温的作用。
电风扇便是利用了电机转动带动扇叶转动,扇叶与旋转面呈一定角度,旋转时以斜切的方式挤压受力面的空气,从而产生气流。扇叶做成流线型可以避免不必要的摩擦损耗动能,同时可以减小噪音。扇叶旋转时上部空气受力“流走”而原来所在的位置会产生负压。而下部空气因为负压“流入”该区域,形成连续的空气流动。
无叶风扇近几年也好好地火了一把,其外表看起来高级炫酷,无叶设计不会覆盖尘土或者伤害到儿童的手指。
可能不少朋友会好奇无叶风扇没有扇叶,风是从哪里来的?无叶风扇最早于1981年由日本东京芝浦公司取得设计专利,在2009年由英国的詹姆斯·戴森(James Dyson)制造及投入市场。但它并非真正无扇叶,实际上只是扇叶隐藏在底座里面。
无叶风扇的底座设有离心式压缩机,以叶片旋转在底座四周吸入空气、增压,推送至风扇顶部的中空的管状环,管状环上一端有幼窄的缝,空气自此窄缝喷出,喷出的方向使被喷出的空气沿管状环的内壁前进,由于内壁的横切面成翼型,基于伯努利定律使得在空气喷出环的一边的内壁表面成形成低压,如此,形成环中心前方较后方低压,后方的空气因而被拉进往前,环内的大量空气因此被牵引喷出。
当然吹风并不能真正实现温度降低,要想实现科学降温,就不得不利用热力学的知识。在现代技术中,一般有三类方法来实现低温:一类利用低温冷剂,一类通过气体动力学作功,还有一类则是利用某些物理化学现象,如热电效应、顺磁效应、隧穿效应等。
低温冷剂便是利用低温物体与高温物体接触实现高温物体的降温,比如在可乐里加冰块,还有物理所传统技艺——液氮冰淇淋。聪明的古人早在周代就开始在冬天采集冰块放入冰窖储藏,等夏天再取出来消暑。到了现代社会,随着空气液化技术和杜瓦技术成熟,这种简单粗暴的制冷方式不但没有淘汰,反而应用于各种高大上的实验设备中,比如扫描隧道显微镜(STM)、磁学测量系统(MPMS)等。
要谈气体动力学制冷,就得直面大名鼎鼎的“卡诺循环”。1824年,法国工程师尼古拉·莱昂纳尔·萨迪·卡诺提出了卡诺循环(Carnot cycle)来分析热机的工作过程。卡诺循环是假设只有两个热源(一个高温热源温度T1和一个低温热源温度T2)的简单循环。由于工作物质只能与两个热源交换热量,所以可逆的卡诺循环由两个等温过程和两个绝热过程组成,在理想气体的准静态过程中进行能量转化。
斯特林制冷器正是利用逆卡诺循环来实现降温的,它由冷热活塞、冷量换热器、冷却器、回热器和两个气缸组成。
冷却循环分为4个步骤;等温压缩过程 a→b:冷活塞固定,热活塞右移,以环境温度 Ta 放热 Qa;定容放热过程 b→c:两个活塞同时向右移动,气体的体积保持不变,当热气体通过回热器时,将热量传给填料,因而温度由 Ta 降低到 TL;等温膨胀过程 c→d:热活塞固定,冷活塞右移,温度为 TL 的气体进行等温膨胀,从低温热源(冷却对象)吸收一定的热量 QL(制冷量);定容吸热过程 d→a:两个活塞同时向左移动直至左止点,气体体积保持不变,回复到起始位置。
当温度为 TL 的气体流经时从回热器填料吸热,温度升高到 Ta。
说完理想的卡诺循环热机和制冷器后,再来谈谈它在空调上的应用。1902年后期,首个现代化、电力推动的空气调节系统由威利斯·开利发明。空调的核心原理也是逆卡诺循环,再加上冷媒(如二氟一氯甲烷)的状态改变进行热量的转化来对有限空间进行降温。
利用某些物理化学现象来制冷也并不罕见。
热电制冷又称作温差电制冷或半导体制冷,它是利用热电效应(帕尔帖效应)的一种制冷方法。1834年法国物理学家 J. C. A. 帕尔帖在铜丝的两头各接一根铋丝,在将两根铋丝分别接到直流电源的正负极上,通电后发现一个接头变热,另一个接头变冷。这说明两种不同材料组成的电回路在有直流电通过时,两个接头处分别发生了吸放热现象,这就是热电制冷的现象。半导体材料具有较高的热电势可以成功地用来做成小型热电制冷器。
热电制冷器的产冷量一般很小,所以不宜大规模和大制冷量使用。但由于它的灵活性强,简单方便冷热切换容易,非常适宜于微型制冷领域或有特殊要求的用冷场所。
磁制冷是一种利用磁性材料的磁热效应来实现制冷的新技术。磁热效应(magnetocaloric effect,MCE)是一种变化磁场下磁性材料磁矩有序度发生变化而导致的热现象。
在磁性材料被磁化时,磁矩有序度增加,磁熵减小,温度上升,向外界放出热量;退磁时,磁性材料磁矩有序度减少,磁熵增加,温度下降,从外界吸收热量。1881 年,Warburg 在金属铁中首次发现了这种现象,随后 Giauque 进行了绝热去磁的应用研究,并于1927年获得小于1 K的低温。