自20世纪四十年代以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个数字信息时代、知识经济时代,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,已经成为一种能够普遍实施的技术。
高技术实质上变为一种数学技术。
数学是研究现实世界中不涉及具体物性的数与形、结构的模式和体系的科学,在它产生和发展的过程中,一直是和各种各样的应用问题紧密相联的;数学的特点不仅在于概念的抽象性、逻辑的严密性、结论的明确性和体系的完整性,而最重要的是它应用的广泛性。
所谓数学技术,是指把现实问题转化成一个相应的数学模型,并用计算机加以解决或用数学理论定性、定量地加以研究,得出现实问题的定量结论或重要性质。数学应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向生物、医学、环境、地质、经济、管理、金融、人口、交通等诸多新领域渗透,所以数学技术已经成为当代高新技术的重要组成部分。
当人们需要从定量的角度分析和研究一个实际问题时,就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,这就是数学模型。
数学模型是对实际问题的一种数学表述;具体一点说,数学模型是关于部分现实世界为某种目的的一个抽象、简化的数学结构;更确切地一点说,数学模型就是对于一个特定的对象,为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示和计算机软件等。
数学模型是对现实世界中某一类特殊的运动变化过程、关系的一种抽象性、模拟性的数学结构,是现实模型理想化的一种科学的抽象过程。建立数学模型的过程,就是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。通过调查研究,收集数据资料,观察和分析实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学理论和计算机上的数学方法去计算、分折和解决。
这需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识。数学模型是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术转化为生产力的主要途径。数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的广泛重视,建模已成为现代科技工作者必备的重要能力之一。
不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学模型和计算机技术在知识经济时代的作用愈来愈重要,如虎添翼,甚至能起到关键的、决定性的作用。