近期,中国科学家郭光灿院士团队将光存储时间提升至1小时,刷新了2013年德国科学家团队创造的1分钟的世界纪录,向实现量子U盘迈出重要一步。量子U盘技术中用到的光存储和现有的光存储技术完全是两码事,它们的原理和实现难度差了不止十万八千里。那么,常见的光盘如何存储数据?量子U盘又如何“存储”光?我们为什么要实现这种存储?“留”光一小时的难度与意义在何处?
这篇文章将用最通俗形象的比喻揭开这些问题的答案,让你直达人类科技水平的边界。
光,不仅可以作为照明工具,也是重要的信息媒介。作为重要指示信号的红绿灯和日常上网用的光纤,它们都是最常见的用光来传输信息的例子。光之所以能充当如此多变的信息媒介,本质上是因为光是一种电磁波。就像是我们手机发射的微波信号和收音机的无线电波一样,光作为电磁波也同样可以承载很多信息。
我们身边常见的CD-ROM等光盘就是一个典型的利用光进行信息存储的例子。首先通过激光烧制光盘背面的特殊材料,在光盘上留下一个个“坑”。这样在光驱读取光盘信息的时候,激光光斑会扫描光盘表面的指定位置,没有“坑”的地方就会明显地反射光,这种状态对应于电路中的“通”,记为“1”;有“坑”的地方发生的反射不明显,对应电路中的“断”,记为“0”。这样在扫描的过程中就可以得到一系列包含“0”和“1”的信息串。
通过这一原理,可以利用光对信息进行写入和读取。
通过“0”和“1”的方式获取信息,仅仅利用了光路的通断,光所包含的其他维度的信息(比如光的偏振、振幅、频率和相位等等)几乎完全被忽略。这就好比买了一辆法拉利却专门用来买菜,简直是大材小用。因此科学家不断地创新其他的方式,以期尽可能地利用光的多信息维度实现新奇有趣的应用。量子计算机技术中的量子U盘就可以利用光存储来实现。
说起信息的存储,那必然得有介质,磁带、磁盘、闪存甚至我们的大脑中,都存在着存储信息的介质。我们不可能凭空保存信息,湿滑的地面会留下脚印,晒伤的皮肤会发红变黑,各种形式的信息都要通过介质留下自己的痕迹。那么,光作为一种信息和介质之间存在哪些交互呢?最简单的交互当然是介质对光路的遮挡,除此以外,还有介质对光的反射、折射以及干涉和衍射。不过在量子计算的世界里,光和介质还有很多神奇的交互方式。
首先,光和介质原子间可能会发生相互间状态的传递,这种传递的具体作用方式异常复杂,我们就不展开叙述了。不过,我们可以把这种状态传递想象为是风拂过麦田,麦子随风舞动。风和麦田之间就存在一种状态传递关系。风大麦子头就歪,相反,假如麦子头不太歪,那就说明风不太大。光经过原子,它们之间也会产生类似的联系,光的状态(其实就是光携带的信息)就会传递到原子身上。
近期郭光灿院士团队就在此方面取得了重要突破,他们将量子光存储信息时间提升至1小时。这项研究也被刊登在《自然·通讯》杂志上。上面提到的铕掺杂硅酸钇的铕离子系统可以很好地抵御环境中的磁场扰动,因此能够让量子光存储的稳定性大大提高。
量子光存储的寿命虽然仅仅提高到了1小时,但是这短暂的1小时却是量子通讯和量子计算机技术发展的一大步。