自类星体发现半个多世纪以来,测量它们的宇宙学距离一直是天文学家面临的重大难题。近日,中国科学院高能物理研究所王建民研究员领导的团队发展了一种全新的几何测距方法,成功测量了类星体3C 273的宇宙学距离。这种几何方法具有传统工具不可比拟的优势,为解决日益严重的“哈勃常数危机”提供了新途径。
类星体几何距离测量需要极高空间分辨率的观测,且只能通过干涉突破瑞利极限得以实现。GRAVITY装置是欧洲南方天文台耗资近亿欧元、历时十年完成的终端仪器,装配在世界上最先进的甚大望远镜光干涉阵列(VLTI)上,它在近红外波段实现了高达10微角秒的空间分辨率,相当于一台口径130米的望远镜,已经在系外行星、银心黑洞、微引力透镜等研究领域得到大量科研成果,不断刷新人类对宇宙的认知。
几何方法测距还需要获得类星体宽线区的精确物理尺度,这可以通过观测类星体发射线光变相对连续谱光变的延迟(即反响映射观测)来实现。王建民团队从2012年以来一直使用丽江的2.4米望远镜对活动星系核的宽线区进行长期的光谱监测,利用反响映射观测技术,发现了超爱丁顿吸积的活动星系核具有特殊性质,包括发射线相对连续谱光变之间的延迟缩短、存在黑洞饱和光度等现象,这些现象获得了美国斯隆巡天计划观测证实。
在GRAVITY团队发布了类星体3C 273的干涉观测结果后,王建民团队敏锐地意识到两套独立观测数据之间的互补性:GRAVITY观测的是宽线区的张角,而反响映射观测的是物理尺寸,二者结合可实现高精度测距。
该团队利用GRAVITY干涉数据,巧妙地结合中国科学院云南天文台丽江2.4米望远镜和美国Steward天文台Bok 2.3米望远镜长达10年的反响映射数据,通过建模综合分析,获得了3C 273的角距离为,哈勃常数为。
3C 273距离地球大约20亿光年,远远超出利用造父变星测量距离方法的极限。王建民团队将GRAVITY/VLTI观测与反响映射观测联合分析,实现了类星体距离的直接测量,为解决哈勃常数危机提供了新方法。这种方法不依赖于任何已有的距离阶梯,也不依赖于传统工具必需的消光、红化以及标准化等改正,而且系统误差可进行观测检验,为精确丈量宇宙几何、研究宇宙膨胀速度和历史开辟了一个新途径。
目前,GRAVITY团队和王建民团队正在积极协同观测,扩大样本。根据GRAVITY现有的观测能力,大约有50个活动星系核可以作为GRAVITY—反响映射协同观测目标,在未来几年内有望将哈勃常数的测量精度提高到2%以上,为解决“哈勃常数危机”提供独立和精确的测量。
而在未来的5年,下一代GRAVITY的观测能力将大幅提高,届时将能够实现对红移高达z=3的类星体进行距离测量,建立宽红移范围的距离—红移关系,直接测量哈勃参量、研究宇宙的膨胀历史以及检验宇宙学模型。
这项研究得到了国家自然科学基金委重大项目和科技部重点专项支持。