“化水成塔”——水相环境双光子微纳3D打印

作者: 郑美玲

来源: 中国科学院理化技术研究所

发布日期: 2021-07-11 07:30:00

中科院理化所仿生智能界面科学中心有机纳米光子学实验室郑美玲研究员团队,在水溶性双光子引发剂设计及应用方面取得新进展,实现了水相环境中的微纳3D打印,并应用于仿生3D水凝胶结构的构筑。

在动画中,人物能自由的操控水,将柔软的水凝聚成形化为各种形态,或作为武器,或作为交通工具,“化水成塔”的能力惊叹了无数人。(图片来自网络)

无独有偶,近年来新兴的3D打印技术将这一魔法变成了现实,并且可在水相中进行。形态各异的材料在我们的生活中无处不在,发挥着不可或缺的重要作用。3D打印技术就像有着超能力的鱼人一样,可以将光刻胶、金属粉末等塑形,使处于液态、固体粉末状态的材料“化水成塔”,化为我们想要的任意3D构型,各种结构的制备进一步拓宽了材料的应用范围,引起了全球各领域科学家们的广泛关注。

微纳3D打印技术能够实现具有纳米精度的3D微纳结构的构筑,在众多领域具有广泛的应用前景。飞秒激光双光子微纳加工技术是一种基于非线性光学效应的微纳3D打印技术,可以突破光学衍射极限限制,实现3D复杂微纳结构与器件的可控制备。以水为介质的水相环境飞秒激光双光子微纳3D打印由于具有绿色环保、生物相容性好等优点,引起了生物医学组织工程领域的广泛关注,成为近年来微纳3D打印重要发展方向和热点之一。

然而,围绕水相环境双光子微纳3D打印核心技术,由于现有双光子引发剂的水溶性差、双光子聚合引发效率低,导致所制备的三维水凝胶微结构精度差、细胞毒性大,难以直接制备高精细微纳结构,存在如何提高材料的水溶性和生物相容性,从而提高结构精细度等科学问题。

中科院理化所仿生智能界面科学中心有机纳米光子学实验室郑美玲研究员团队,近期在水溶性双光子引发剂设计及应用方面取得新进展。

提出了高性能水溶性双光子光功能材料分子设计思想与策略,有效提高了双光子吸收截面和生物相容性,突破了非水溶性材料的双光子吸收特性与水溶性难以兼顾的瓶颈,设计合成了一系列高效水溶性双光子引发剂,使得透明均一的水溶液“化水成塔”,“无中生有”,实现了水相环境中的微纳3D打印,并应用于仿生3D水凝胶结构的构筑。

研究人员利用离子型π共轭体系来提高双光子引发剂的水溶性和双光子吸收特性的同时,还通过结合不同的疏水基团调节其生物相容性。在水相环境下的双光子聚合过程中,利用具有相对较大内腔尺寸和良好的水溶性的葫芦脲7作为主体对引发剂分子进行包结,通过改变聚合微环境,进一步提高了双光子吸收截面,从而提高了引发效率。

研究团队利用这种新型水溶剂引发剂结合水溶性单体设计了组分简单的水相聚合光敏材料,并且实现了聚合阈值仅为3.7 mW、最细线宽180 nm的水相环境中的高精细仿生水凝胶结构的构筑。

研究团队利用该光敏体系和所发展的水相环境微纳3D打印技术构筑了结构保真度和力学性能良好的仿生3D水凝胶细胞支架结构,并研究了细胞在支架上的生长行为,荧光探针标记和显微成像研究证实了该类引发剂具有良好的生物相容性,这为水凝胶材料在组织工程领域中的应用提供了科学依据。该工作是研究团队前期一系列微纳3D打印技术及应用的深入和拓展。

相关研究成果发表在ACS Applied Materials and Interfaces (2021, 13, 27796-27805),DOI: 10.1021/acsami.1c02227。该论文的通讯作者是中科院理化所仿生智能界面科学中心有机纳米光子学实验室的郑美玲研究员。相关研究工作得到科技部纳米科技重点专项、国家自然科学面上基金、中国科学院国际伙伴计划等项目的大力支持。

UUID: 70b4327b-6c05-4fea-ac70-b6e53fbd4ac7

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院之声公众号-pdf2txt/2021/中科院之声_2021-07-11_「转」“化水成塔”——水相环境双光子微纳3D打印.txt

是否为广告: 否

处理费用: 0.0044 元