物理学研究中把从高对称性到低对称性的变化称之为对称性破缺。在凝聚态物质中,材料的晶体结构和电子组态也将发生类似的对称性破缺,从而形成新的结构形态或电子相,理解这些电子态的微观起源一直以来都是凝聚态物理研究的核心课题。铁基高温超导材料母体结构在高温下属于四重对称的四方相,随着温度的降低到Ts以下,其晶轴将沿着a方向略微伸长而发生结构相变,形成低温下的二重对称正交相,造成ab面内的结构对称性破缺。
相应地,其自旋结构也将从高温下无序的顺磁态转变为低温下有序的反铁磁态,其自旋排列沿a轴为反铁磁,沿b轴为铁磁,对应磁相变温度为反铁磁奈尔温度TN。在退孪晶的铁基超导单晶中,低温下沿a方向的电阻要比b方向的电阻小得多,即面内电阻存在很强的二重对称性,这种电阻的各向异性度要远大于晶格畸变带来的差异,说明其物理本质来源于电子态自身。
更重要的是,这种二重对称的电子态特征持续到了结构相变温度Ts之上,在四重对称的四方相晶格结构中形成了电子态对称性破缺。这种保持平移对称而破坏旋转对称的电子态被称为电子向列相,其微观机理是理解高温超导材料中复杂电子态相图及新奇量子行为的基础之一。
尽管已有实验从电荷的角度揭示铁基超导材料中电子向列相从母体到最佳掺杂附近样品均普遍存在,但其他实验和理论表明从轨道的角度也同样可以造成类似的电子态对称性破缺。此外,一些实验证据则表明杂质散射造成的局域各向异性同样可以出现类似特征。因此,有关铁基超导材料中电子向列相的物理起源仍然存在很大的争议,从自旋的角度给出电子向列相的决定性证据也一直处于空白,许多物理机制仍待深入理解。
最近,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)超导国家重点实验室的博士生鲁兴业、硕士生张睿、罗会仟副研究员、戴鹏程研究员等人利用非弹性中子散射实验手段,首次从自旋角度针对电子型掺杂铁基超导体BaFe2-xNixAs2中电子向列相问题开展了相关研究。他们首先确认母体材料BaFe2As2在低温正交相中低能磁激发仅存在于Q=(1, 0, 1)反铁磁点,即是二重对称的。
随着温度升到Ts=TN=138 K之上,Q=(0, 1, 1)点的磁激发也开始出现,但其强度要远小于Q=(1, 0, 1)点,两者的差异持续到了160 K左右,远远高于结构相变温度,这种自旋激发态的对称性破缺是自旋向列相的典型特征。
通过对比电阻各向异性的测量结果,他们发现自旋激发差异产生的温度点和掺杂区间与电荷角度揭示的向列相结果高度一致,这说明电输运测量观测到的电子向列相和中子散射观测到的自旋向列相之间具有相同的物理起源。该项研究工作于2014年7月31日在美国的《科学》杂志上发表。