科研人员基于软模板原子层组装技术实现多重纳米结构精准调控加工

来源: 中国科学院物理研究所

发布日期: 2021-05-27 17:00:00

中国科学院物理研究所团队研发出一种基于软模板的原子层组装纳米制造技术,解决了传统刚性模板的问题,具有较好的灵活性、可扩展性和普适性,其强大的纳米结构构造能力可实现各种材料杂化、异形复杂纳米结构阵列的可控裁剪加工和功能器件应用。

利用各种纳米加工技术制备的纳米结构和器件在微纳光子学、微纳电子学、生物学及纳米能源等领域发挥了重要作用,但同时也对纳米加工的尺寸、形状、空间排列和组装等工艺控制提出了越来越高的要求。

现有的传统纳米加工技术(如电子束曝光、聚焦离子束直写、阳极氧化和自组装技术)通常在实现无序、杂化、不规则及变径等特殊纳米结构的可控加工上具有明显的局限性,难以实现复杂多重纳米结构在材料和形状上的精确调控,因此,需要一种能力更强大的纳米加工方法以满足特殊纳米结构的极端加工要求。

中国科学院物理研究所/北京凝聚态物理国家研究中心微加工实验室团队致力于纳米制造新方法和原理及其光电器件应用领域的研究,在前期研发的亚5 nm金属间隙结构阵列的晶界断裂与应变加工和纳米折纸三维加工方法的基础上,该团队的耿广州在主任工程师李俊杰的指导下,与N10组研究员顾长志合作,研发出一种基于软模板的原子层组装纳米制造技术,解决了传统刚性模板的问题,具有较好的灵活性、可扩展性和普适性,其强大的纳米结构构造能力可实现各种材料杂化、异形复杂纳米结构阵列的可控裁剪加工和功能器件应用。

研究人员首先利用电子束曝光技术在电子束抗蚀剂软模板上曝光出设计的图形,然后采用原子层沉积技术在软膜板结构内共形组装各种功能材料,再通过分立刻蚀工艺去除顶层及软膜板,最终制备出具有各种特异性的大面积复杂纳米结构阵列。

这种基于软膜板原子层组装加工技术兼具电子束曝光的高分辨率和原子层沉积精准可控及共形包覆的优点,不仅可制备各种空心/实心的多重纳米结构,还实现在柔性衬底的加工,尤其可获得超高深宽比、超高精度、超薄管壁且一致性好的极端纳米结构。

为了验证原子层组装加工方法的功能器件应用,研究人员利用该工艺,设计和制备出具有各向异性结构特点的全介质高效光学超构表面器件,通过高长径比纳米鳍状结构单元的不同角度旋转及错位排列,实现了对宽波段矢量光束的任意偏振调控。

同时,还设计制备出具有高深宽比和大比表面积的Al2O3/TiO2复合的中空六角纳米结构阵列,并与Pd纳米颗粒相结合,基于异质界面二维电子气原理,构筑了高性能的氢气传感器,获得的传感性能比传统的平面氢气传感器具有较大提升,尤其在较低温度所具备的高灵敏度和最短恢复时间,为高性能氢气传感器提供了理想方案。

UUID: dba6f4b8-6600-4896-9eb3-5b5a0b7588a9

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院之声公众号-pdf2txt/2021/中科院之声_2021-05-27_科研人员基于软模板原子层组装技术实现多重纳米结构精准调控加工.txt

是否为广告: 否

处理费用: 0.0036 元