闪电的前世今生

作者: 袁善锋

来源: 中国科学院大气物理研究所

发布日期: 2020-02-17 07:30:00

本文详细介绍了闪电的形成过程、雷暴云的带电机制以及闪电在云内的发展和观测研究,特别强调了高建筑物上行闪电的研究成果。

闪电是大家很熟悉又很陌生的天气现象。通常来说,空气的流动是水平方向为主,垂直风速在厘米/秒的量级。在夏天,那朵朵轮廓清晰、像棉花糖一样的云朵,在合适的条件下垂直风速可达到十几米/秒,可以形成高度达到对流层顶的积雨云,产生大风、暴雨、冰雹、雷电等强烈的天气现象。这种到达一定高度、能够产生闪电的积雨云,我们称之为雷暴云。

飞机在遇到这种不均匀的垂直气流时会出现颠簸,在起飞和降落阶段遇到尤其危险,所以夏天的时候飞机常常因为这样的天气原因而停飞。

雷暴云是如何带电的呢?关于雷暴云带电的理论有很多,目前占主导地位的是“非感应起电”。高耸的雷暴云内部含有大量的冰晶、软雹、过冷水等不同的水成物粒子,这些粒子之间互相碰撞,携带了不同电荷,大的重的粒子下沉,小的轻的粒子上升,这样在雷暴云内形成了携带不同电荷的电荷层。

在这种非感应起电机制的作用下,雷暴云从上到下呈现“正-负-正”的典型三极性电荷结构。

闪电在云内是如何发展的呢?在雷暴云内的正负电荷层之间,当电场强度足够大时,就会产生闪电。闪电像树的生长一样不断延展通道,“根”和“叶”同时朝着相反的方向发展,这棵闪电树整体呈电中性,一端带正电荷朝着云内负电荷区发展,另一端带负电荷朝着云内的正电荷区发展。

大多数的闪电就这样发生、发展、熄灭在云内;也有部分闪电,向下发展的先导通道抵达地面,形成了一次云地闪电。这样的云地闪电也是雷电防护的主要对象。

闪电的两端通过击穿空气的方式不断发展,建立了整个闪电通道。这个引领发展的头部,我们称为“先导(leader)”,而这种两端携带相反电荷、同时发展的先导通道被称为“双向先导”。

在云内发生的闪电,由于云体的遮挡,很难被直接观测。一般通过探测闪电的辐射信号获得云内闪电通道的发展特征,但是由于正先导的辐射信号弱,往往都淹没在同时发展的负先导信号以及背景噪声当中。发展出云的云地闪电,是可以通过高速光学手段进行观测的。

当建筑有效高度超过100米,有趣的现象发生了。在雷暴条件下,高建筑物的顶部局地电场最强,可以自己击穿空气,始发上行先导,向雷暴云内发,形成所谓的“上行闪电”。这样的闪电为研究闪电的发展细节提供了很好的观测机会,并且始发的大都是目前了解比较欠缺的正先导。

中科院大气所郄秀书团队利用高耸铁塔易遭雷击的特点,持续多年对325米气象塔组织开展了光、电、磁等多手段综合观测,取得了对高塔闪电较为系统的认识。最近,他们更获得了每秒高达38万帧的闪电先导发展光学图像和同步的电磁场变化波形,以高时空分辨率解析了在同一光学图像内相互靠近的自然正、负先导的传输过程。

这些研究发现拓展了对正先导传输机制的认识,也为今后建立和完善正先导自持发展物理模型奠定了重要的观测证据和理论基础。研究成果发表在Journal of Geophysical Research: Atmospheres、Geophysical Research Letters等期刊上。

UUID: 202299bf-e89b-40f7-a7c2-364fc6869ffa

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院之声公众号-pdf2txt/2020/中科院之声_2020-02-17_闪电的前世今生.txt

是否为广告: 否

处理费用: 0.0046 元