科研人员开发出基于深度学习的单细胞转录组分析模型

来源: 中国科学院北京基因组研究所

发布日期: 2020-11-13 17:00:00

中国科学院北京基因组研究所研究员蔡军研究组与北京师范大学教授张江研究组合作,开发出一种基于深度学习的单细胞转录组分析模型,名为单细胞胶囊网络(scCapsNet),该模型能够更稳定、高效地分辨新细胞类型,并通过内部参数找出细胞类型相关基因,提高模型的可解释性。

单细胞转录组作为单个细胞的特征,可更加精确地定义细胞的类型。常规的基于单细胞转录组的分类方法首先是进行无监督的聚类,然后根据每个集群特异表达的细胞标记基因来对集群进行标注。虽然基于无监督的分类方法更容易发现新细胞类型,但是人工标注的过程费时费力。目前已有的基于监督学习的自动分类方法,大部分无法兼顾到方法的可解释性以及新细胞类型的发现。

近日,中国科学院北京基因组研究所(国家生物信息中心)研究员蔡军研究组、北京师范大学教授张江研究组合作在Nature Machine Intelligence发表了题为An interpretable deep-learning architecture of capsule networks for identifying cell-type gene expression programs from single-cell RNA-sequencing data的研究成果,构建出决策过程可解释的深度学习网络模型,单细胞胶囊网络(single cell Capsule Network, scCapsNet),并用于单细胞转录组分析。

相对于其他单细胞转录组自动分析工具,单细胞胶囊网络能更稳定更高效地分辨出属于新细胞类型的细胞。同时,单细胞胶囊网络能通过模型的内部参数找出细胞类型相关基因。通过细胞类型相关基因,单细胞胶囊网络能将基因与细胞类型直接联系起来,提高了深度学习模型的可解释性。本质上,单细胞胶囊网络将基因的表达特征和细胞类型特征进行低维编码,这样的编码富含生物学意义。

蔡军与张江为论文共同通讯作者,北京基因组所博士王力飞为论文第一作者。研究工作得到科技部重点研发项目、中科院战略性先导科技专项、国家自然科学基金委员会等的资助。

UUID: 7dffe774-3470-4e21-a45f-38c9ec5c5f9c

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院之声公众号-pdf2txt/2020/中科院之声_2020-11-13_科研人员开发出基于深度学习的单细胞转录组分析模型.txt

是否为广告: 否

处理费用: 0.0021 元