科学家建立高效iPS重编程系统并解析其表观调控机制

来源: 中国科学院动物研究所

发布日期: 2014-03-23 02:06:50

中国科学院动物研究所和Emory大学的研究团队通过融合转录共激活因子YAP的转录激活结构域与Oct4、Sox2、Nanog,开发了一种高效且快速的iPS重编程方法。该方法显著提高了重编程效率和速度,并揭示了Tet1/2在重编程过程中的关键作用。

诱导多能干细胞(iPSc)技术自诞生之日起就受到了人们极大关注。但是诱导多能干细胞是一个耗时长、效率极低的过程,其需要2至3周诱导时间,效率只有0.01-1%。并且对于其机制目前也研究得不是很透彻。iPS技术要真正走向临床应用还有许多问题亟待解决,如深入了解其机制、提高诱导效率、缩短诱导时间和提高安全性。

由中国科学院动物研究所研究员陈大华和孙钦秒以及Emory大学教授金鹏领导的研究团队,将转录共激活因子YAP的转录激活结构域(TAD)和Oct4、Sox2、Nanog分别进行融合。这种融合了激活结构域的诱导方法(OySyNyK-iPS)和传统的诱导方法(OSNK-iPS)相比,可以更加快速、高效地诱导体细胞重编程。

OySyNyK-iPS诱导方法可以在转染后24小时左右就观测到Oct4-GFP报告基因的表达,3-4天就有初步的iPS克隆形成,6-7天就可以挑取iPS克隆进行建系传代,而传统的OSNK-iPS方法则需要两周左右的时间才能进行建系传代。并且该融合因子方法iPS诱导效率比传统OSNK-iPS诱导方法高达100倍左右。

进一步机制研究表明Tet1/2在体细胞重编程早期过程中起着重要作用,Tet1/2表达水平和5hmC的水平在iPS形成过程中都呈上升趋势。在iPCs形成过程中,敲低Tet1或者Tet2的表达都显著地降低iPS的重编程效率。同时该研究还发现Sox2、Nanog可以和Tet1/2相互作用,因此可以影响Tet1/2蛋白在多能性基因启动子区域的定位,并通过去甲基化方式激活多能性基因的表达。

该成果近日发表在Cell旗下的Stem Cell Reports杂志上。

UUID: 79949931-b14c-4289-8cce-52977b17ac55

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院之声公众号-pdf2txt/2014/中科院之声_2014-03-23_科学家建立高效iPS重编程系统并解析其表观调控机制.txt

是否为广告: 否

处理费用: 0.0023 元