化学反应研究不再“抽盲盒”

作者: 孙丹宁

来源: 中国科学报

发布日期: 2023-01-18 08:44:52

中科院大连化学物理研究所的研究团队通过实验和理论双重角度,实现了在H+HD反应中的立体动力学精准调控,这一成果标志着反应动力学领域的重大突破,展示了通过激光技术控制氢分子化学键方向,从而精细调控化学反应的可能性。

化学反应无处不在,在化工生产过程中,工程师通过添加催化剂,改变化学过程的温度、压力等宏观参数,在一定程度上控制化学反应得到所需产物。随着人们对化学反应的认识达到原子分子尺度和量子态的水平,如何在更精细水平上对化学反应进行调控,成了化学科学研究的新课题。

中科院大连化学物理研究所杨学明院士、肖春雷研究员团队联合张东辉院士、张兆军副研究员团队从实验和理论双重角度,在H(氢)+HD(氢氘)反应中实现了立体动力学精准调控。相关成果近日发表于《科学》,审稿人评价该工作是“反应动力学领域里程碑式的突破”。

立体动力学效应是化学反应中一个基础而重要的问题,主要关注碰撞过程中反应物分子的空间取向对反应过程的影响。如何利用立体动力学效应实现对化学反应过程和结果的精细控制,是化学动力学的研究前沿。

氢分子是最简单的分子,它就像一个哑铃,由两个氢原子通过类似“弹簧”的共价键连接而成。在与另一分子相互接近的过程中,由于氢分子是非极性双原子分子,不容易发生取向变化,因此其参与的基元化学反应是研究立体动力学效应的理想模型。

化学反应的实质是微观粒子相互碰撞并引发旧化学键断裂、新化学键形成的过程。在碰撞过程中,控制分子化学键的方向十分困难。由于人们难以在实验上制备足够数量的具有特定取向的氢分子,因而无法研究相关反应中的立体动力学现象。

针对这一挑战,研究团队自主研制了一种高能量、单纵模纳秒脉冲光参量振荡放大器。激光作用于氢分子后,可以将氢分子激发至振动激发态。由于振动激发态氢分子化学键的方向与激光电场方向相平行,改变激光的电场方向便可改变分子方向。而激光电场方向又被称为偏振方向,可以简单通过波片这一光学器件对其进行控制。

通过在受激拉曼激发过程中操控激光光子的偏振方向,杨学明、肖春雷实验团队可以在分子束中将能量高效注入氢分子的化学键,同时赋予化学键特定的空间取向,这便成了解决此问题的“关键先生”。

有了控制氢分子化学键方向的技术之后,化学反应的研究驶入了快车道。化学反应都是通过碰撞发生的,而“交叉分子束”技术可以研究化学反应的碰撞过程,通过将反应物分子制备到特定的速度、量子态之后,再进行相互碰撞,可以获得其中的反应机理信息。

团队通过控制HD分子化学键的方向,研究了两种典型的碰撞过程:平行碰撞与垂直碰撞。碰撞之后,反应得以发生,得到的氢分子与氘原子会散射到各个方向,就像台球被碰撞后向四处散去,获得了不同的散射方向。

研究组内成员将张东辉和杨学明的合作称为“双剑合璧”。为了理解动力学过程,张东辉的理论团队开展了非绝热量子动力学模拟。该模拟过程精确重现了实验所观测到的现象,并且结合极化微分截面理论方法,详细分析了反应中存在的立体动力学效应。

理论与实验结果的一致性,验证了通过氢分子量子态空间取向的操控,可以对化学反应进行精细调控,为将来建立精确的化学反应理论体系、发展主动调控化学反应的方法提供了新的思路。

UUID: 2b165178-e53d-4fa6-ae63-5568b24c14ac

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中国科学报公众号-pdf2txt/2023/中国科学报_2023-01-18_Science:化学反应研究不再“抽盲盒”.txt

是否为广告: 否

处理费用: 0.0039 元