继科学家拍到宏观宇宙中的黑洞照片之后,中国科学家在国际上首次拍到了一幅来自微观世界的、特殊的“清明上河图”。这支“拍摄”团队是中国科学院大连化学物理研究所(以下简称中科院大连化物所)李灿院士、范峰滔研究员团队。他们拍到的是光催化剂光生电荷转移演化的全时空图像。该成果10月12日发表于《自然》。
在催化剂的帮助下,阳光把水变成燃料。这最初只是一个古老的幻想。
但科学家们却一直想把这个幻想变成现实,直至今日,光催化分解水依旧被奉为化学领域的“圣杯”。20世纪70年代起,日本科学家开始组织研究团队想办法夺取“圣杯”。那时人们已经实现太阳能光催化制氢,但光催化的效率一直上不去。0.1%、0.2%、0.3%……直到90年代,代表催化效率的数值也只是勉强升到了1%左右。
然而,只有催化效率达到5%以上,太阳能光催化制氢才有可能实现工业化,只有达到10%才能与化石能源媲美。
从2000年起,李灿团队也加入了“圣杯”争夺赛。和国际其他研究团队不同,他们先花了一些时间寻找光催化效率上不去的原因,直到找到对催化效率起决定性影响的三个因素——捕光、电荷分离、催化转化。他们判断,太阳能光催化制氢的核心科学挑战在于如何实现高效的光生电荷的分离和传输。了解光生电荷转移演化的过程,就是他们接下来要做的。
2008年,实验团队借助自主研制的光谱设备,在氧化钛异相结里发现了一些可能是由电荷转移演化造成的实验现象。但李灿还是觉得差点意思。2010年的一天,李灿身体不适,去医院做检查。他无意中发现医生常用成像的方法做血管检查。回到病房后,恍然大悟的李灿激动地拨通了团队成员范峰滔的电话:“我们能不能用成像的办法,去看看光生电荷到底是怎么转移和演化的?”从那时起,给光生电荷“拍照”就成了新目标。
之后,研究人员综合集成多种可在时空尺度衔接的技术,将多种先进的表征技术和理论模拟结合起来,让实验室里的时间分辨光发射电子显微镜(飞秒到纳秒)、瞬态表面光电压光谱(纳秒到微秒)、表面光电压显微镜(微秒到秒)等仪器像参加接力赛一样,接替着在不同的时间尺度和空间尺度上为光催化剂颗粒表面的光生电荷拍照。
让李灿惊讶与惊艳的影像,展示了光催化剂纳米颗粒表面的光生电荷从出现到消失的全时空过程。研究人员还发现,光催化剂晶体表面上光生电荷和空穴的有效空间分离,是由于时空各向异性的电荷转移机制共同决定的,该复杂机制可以通过各向异性晶面和缺陷结构进行可控的调整。
面对当前光催化效率依然停留在百分之一点几的现状,李灿感慨:“我们的研究是一项基础研究,只是解决光催化效率问题的第一步,之后我们要做的事情很多,挑战也很大。”“圣杯”争夺赛依然在继续,中国队在不断前进。“未来,我们将把梦想逐渐变为现实,为我们的生产和生活提供清洁、绿色的能源。”李灿说。