文章集中在球类运动中球的飞行和滚动所涉及的物理。选择了几个可能感兴趣的问题,如表面粗糙度和尺寸对球飞行的影响,弧线球和飘球的成因,投篮的角度和速度,斯诺克球台的库高和保龄球球道上油的作用,做了定性或半定量的讲述。文章作者认为,物理研究有助于运动水平的提高,在物理教学中也有助于激发学生的学习兴趣。
篮球、排球、足球、乒乓球、网球、台球和高尔夫球等球类运动是参与人数众多、深受欢迎的体育运动,运动的普及和提高关乎全民的身体素质,也关系到国家的荣誉。在提高运动水平方面,除去要有广泛的群众基础外,基础研究和由此产生的创新也是十分重要的。
笔者对球类运动物理的兴趣是从一个具体问题开始的,即假如足球守门员大力开球,同样的角度和初速度,表面光滑的球和表面粗糙的相比,哪一个飞得更远?
笔者和被问到的大多数人一样,基于直觉,认为飞行时光滑球所受空气阻力较小,选择了前者,可惜回答是错误的。少数人认为问题必含玄机,选择了后者,但也说不出原因。笔者为找寻问题的解答,在阅读相关书籍和文献的过程中,逐渐涉及到其他的球类,本文集中在球的飞行和滚动方面,选择了读书所得的几个片段和大家分享,文章就从上面的问题开始。
对球类飞行动力学的研究,开始得较早、工作也较多的是对高尔夫球所做的研究,早在1910年,著名物理学家J. J. Thomson就发表了这方面的研究论文,相继的研究工作导致了为让球飞得更远,在球的表面上采用了布满小凹痕(dimple)的设计,事实上一个表面光滑的球,职业选手击出后的飞行距离,大约只是布满凹痕球的一半。
回到我们接触较多的足球,按竞赛规则要求,球的外壳必须是用皮块并通过预先穿好的针眼缝合在一起的,针眼总数约2000个,缝线凹槽深度约1-2 mm,球面上的这些缝线凹槽同样对球的飞行有重要影响。守门员大力开球,将球踢到对方半场是很平常的事,但是如果用光滑球,没有缝线凹槽的功劳,恐怕就不太容易做到了,粗糙的表面可降低空气阻力的道理涉及“边界层”的概念。
对于空气、水和油等具有黏性的实际流体,描述其动力学行为的是Navier-Stokes方程(简写为N-S方程),针对具体的问题,给出相应的初条件和边条件,原则上可得到解答。
由于这是一组非线性的二阶偏微分方程组,且具体问题的边条件往往又十分复杂,仅在少数特定情况下才可解,利用沉降的小球测量油的黏性系数η是我们熟悉的例子,这是雷诺数Re的极端情形,Re=ρvd/η,其中ρ是流体的密度,v是流速,d是物体相关的特征长度,这里是球的直径。
很小的雷诺数意味着面对的问题属黏性显著占优势的情形:或流体有很高的黏性系数,或对平常流体当问题涉及的尺度很小的时候,此时N-S方程因惯性力项可全部略去而可解,在小球沉降情形,得到的是我们熟悉的描述小球所受阻力大小的Stokes方程。
在球类运动中,涉及的流体是空气,如果将水的黏性系数定为1,重机油的约为60,而空气的则是1/60,属低黏性流体,相应的雷诺数很大,约在10^5的量级。
在大雷诺数情形,对N-S方程的求解是十分困难的课题:如果因黏性系数小而将方程中相应项完全略去,相当于将流体视为无黏性的理想流体,方程可解,但得到的结果往往与实验观测不符;如不略去黏性力项,方程又难于求解。1904年,德国科学家普朗特引入“边界层”的概念,解决了这一难题,是近代流体力学的重大发展之一。
边界层理论的基本想法是,在黏性系数很小的情形,可将整个流场分做两部分处理,黏性只表现在附着于物体表面上的边界层内;从表面向外,边界层中气流的速度从零逐渐加大到与外部气体流速相同,不同速度层间存在摩擦损耗。对于边界层以外的流体,则完全略去黏性力的影响,用理想流体的理论处理,并将得到的解作为边界层外缘的边条件,这样整个问题可得到解决。边界层的厚度δ约等于d/Re^(1/2),其中d为球的直径。
对于足球,取R为10^5,δ~1mm,这和足球表面的缝线槽深相近,可以预期,缝线槽的存在会对球的空气动力学有重要的影响。
弧线球和弧圈球,足球运动员在罚直接任意球或角球时踢出的弧线球(也常称为香蕉球),在空中划出美妙的曲线,绕过人墙飞入球门,令人叹为观止。从力学原理知道,球的转向必定是受到侧向力的结果;从运动员踢弧线球的脚法,我们可以推断,这种力一定和球的旋转有关。
飘球,在排球运动中,发球可以直接得分或破坏对方的一传,是唯一不受他人制约的技术,历来受到重视。发飘球的技术兴起于上世纪60年代,包括上手飘球、勾手飘球和后来发展起来的跳发飘球,由于球飞行轨迹特有的不确定性,忽左忽右,或上飘或下沉,接球方难以应付,成为重要的发球技术,其机理也为人们所关注。
小球和大球,1921年,英国高尔夫球管理委员会规定球的最大质量为1.62英两(45.93 g),最小许可直径为1.62英寸(41.1 mm),1931年美国高尔夫球协会对于球重,选择了和英国相同的规定,但是最小许可直径却定为1.68英寸(42.7 mm),大于英国的规定。这样美国的球可以在英国用,英国的球却违反美国的规定。高尔夫球界开始了小球和大球之争。
什么角度投篮最准,篮球的表面上有缝线凹槽,且截面积较大,从前面几节的讨论,读者也许会预期,对本节问题的回答,多半又要涉及边界层的行为了。实际上空气阻力对篮球飞行的影响较小,原因是球的飞行速度相对较慢。典型的数值为6-9 m/s,飞行的时间较短,一般在1 s左右,球也要更重一些。这样,在讨论什么角度投篮最准时,我们可以先完全略去空气阻力的存在,然后再看阻力带来的修正。
台球桌的库高有什么讲究,以丁俊辉为代表的中国军团在台球运动中的崛起,提升了国人对这一运动项目的关注,书店里也增加了许多有关台球运动的书籍。每一本书都有关于“器材”的一节,会给出球台的长、宽、高度,以及开始时球的摆位等,惟独找不到称为库的台边的高度。库是台面四周的边框,边框为木制,高出台面,上部贴有标准弹性的胶条,呈Г形,外覆羊毛绒台面呢。实际上,库高度的选择是很有讲究的。
保龄球球道的玄机,相对于台球,对在球道中保龄球运动的分析要复杂一些。首先是球道的摩擦系数,并不能简单地处理为常数;其次,对有指孔保龄球的重量和直径,规则虽有限定,但并不要求球是完全均匀和对称的。事实上,在用树脂材料做的保龄球中,包有形状各有差异的重物块,这使对通过球心、取向不同的轴,球的回转半径有差别,以及球心和质心位置的不重合,结果是在讨论球的转动时,转动惯量张量不能对角化。
对于制作考究、高质量的球,这种差别限制在小的范围内,例如,对任意两轴的回转半径之差不能大于0.2 cm,球心和质心的距离必须控制在小于或等于1 mm。数值模拟计算表明,这种小的差别对球的运动轨迹仍有明显的影响。
结束语,首先,在跑动中运球的篮球运动员,除非要变换速度和方向,否则只要垂直向下拍球。跑动中的投篮和立定投篮不同,要根据跑动的速度和方向调整投篮的瞄准点,因为球离手时,携带有球员跑动的速度。
跑动中的球员觉得球是垂直向下或向上运动时,在场外观众的眼里,实际上球是向斜前方运动的。其次,从运动员和教练员的角度,了解球类运动背后的物理重要吗?本文讨论过投篮的准确度,投篮时球出手的角度随球员与篮框间的距离有所变化,在出手角度确定后,篮球通过篮心和刚好擦着框边进入篮框,按照数值计算的结果,出手时球速的差别小于1%,初速度取值的宽容度实际上是很小的。
可是我们注意到,通过刻苦的练习和摸索,球员可具有很好的运动的和肌肉的记忆,一个职业球员在没有干扰,或练习中投篮的命中率可达70%或更高。作为物理学家,我们可以说的是,一方面,从优秀运动员投篮的角度、速度、手法等可以检验和修正理论分析所用的物理模型;另一方面,运动员了解相关的道理后,在练习中会更加自觉,缩短摸索的过程。第三,运动水平的提高,需要有创新。
以乒乓球为例,据统计,在中国乒乓球队处于领先地位的20世纪50年代到80年代前期,世界公认的技术创新共29项,其中属于中国的有22项,占总数的75.9%。但从1988年到1997年,在公认的7项创新技术中,中国只有1项,占有率下降到14.3%,和在这一阶段中国乒乓球队在重要比赛上出现败绩,留有遗憾是一致的。
这些技术创新,尽管大部分是靠运动员和教练员在实践中探索得到的,显然还需要从理论上得到说明和提升,当然也还需要研究人员提出建议,发展新的技术。在这两方面,物理研究均占据重要的地位。