蒙蒙卡和张量量|量子多体中的呐喊与彷徨之六

作者: 孟子杨

来源: 中国物理学会期刊网

发布日期: 2020-11-14 11:56:26

本文讲述了在量子多体计算领域中,一群研究人员如何通过蒙特卡洛和张量重正化群的计算方法,探索量子材料的研究,并成功地完成了多个有趣的计算。他们的研究不仅验证了理论模型,还发现了新的问题,展示了量子材料研究的广阔前景和无限可能性。

有的童话穿越历史,变成了一个民族心中的文化图腾,如西游记之于中国人,安徒生和格林童话之于欧洲人。有的童话停留的时间稍短,但也是一代人甚至几代人心中共同的启蒙故事,如《星际旅行》、《铁臂阿童木》、《机器猫》甚至《哈利波特》。对中国的孩子来说,尤其是在1980年代至1990年代成长起来的孩子,这样的童话应属皮皮鲁和鲁西西的故事了。

这些故事填补了彼时孩子们十分枯燥和闭塞的学校教育的空白,让他们感受到了想象力的震撼和独立思考带来的乐趣。

一晃几十年过去,彼时的孩子都长成了大人,他们中有人也开始教育自己的孩子按照当下学校里和社会上的教条行事,而他们自己也努力地学着当下社会上的通行规范,扮演着一个好员工、好同事、好下属、好老师或者好领导的角色,童话嘛,毕竟是要远去的。但是大家偶尔想起皮皮鲁和鲁西西,又似乎心有不甘,想着毕竟什么时候还是要做出一些像他们那样出格的、有趣的事情,尝试一些与众不同的、能够发现新的世界的探索,人生才不算白过。

在笔者熟悉的量子多体计算领域,就有一群这样不能忘情的人,还总想着皮皮鲁和鲁西西,总喜欢玩些在行业内的正人君子们、行业内的成功者们看来离经叛道,吃力不讨好的游戏。最近就有这样一个故事,这几个童心未泯的小伙伴,用蒙特卡洛和张量重正化群的计算方法,完成了好几个好玩的计算,还鼓动着实验物理学家们验证了他们的结果,实验的伙伴们更发现了有趣的新问题。

量子材料研究是很好玩的事情,因为量子材料是一个很大的筐,什么东西都放得进去:从超越摩尔定律的新一代集成电路人工智能芯片材料,到具有解决能源危机潜力的高温超导体,还有现在十分流行的转角石墨烯二维范德瓦尔斯层状材料,再到希望成为量子计算机信息存储载体的拓扑物态,都算量子材料的内容。

但是对于这些材料性能的研究需要严格处理其中阿伏伽德罗常数量级的满足量子物理学规律的电子行为,计算量子多体系统在温度、压力和磁场等外界环境变化时的响应,从而确定其在科研和工业应用中合适的参数范围。

在量子多体计算研究这个广大的领域之中,量子蒙特卡洛方法和张量重正化群方法,无疑是两种最具有代表性的手段。

前者及其最近的发展笔者在这个系列的前几篇文章中已反复介绍过,主要是通过设计抓住问题物理实质的晶格模型,然后在如是模型的合适相空间中进行蒙特卡洛抽样,计算量子多体问题的配分函数和各种物理观测量的系综平均值和误差。而后者则一路从密度矩阵重正化群演化而来,主要关注于量子多体基态波函数的张量网络表示与其重正化群操作。

这次蒙蒙卡和张量量面对的问题是如何“破译”二维阻挫磁性晶体TmMgGaO4(TMGO)的“材料基因”,即得到这样材料体系的正确微观模型和模型中的参数。材料的示意图如图1,晶格结构为三角晶格,通过物理和化学结构的分析,人们认为三角晶格量子伊辛模型似乎是一个合适的出发点,但是问题是精确模型参数该如何得到?这里张量量发挥了很大的作用。

实验的结果显示在图4这个示意图的背景中。

随着温度的降低,系统处于顺磁状态,自旋晶格弛豫率随着温度先降低,后开始缓慢抬升,预示着系统内部的磁性涨落在逐步增强;当温度到达KT相的上边界Tu的时候,本要发散的1/T1突然到达一个平台,而在T1<T<Tu的整个温度范围内,自旋晶格弛豫率始终保持在这个高的平台而基本不变,这样的平台就说明系统在这个温度范围内具有很强的磁性涨落,但没有发展出长程序,这正是KT相应该具有的行为。

至此,蒙蒙卡和张量量此番量子材料探索行迹已交代清楚,这样无拘无束的探寻让众人尝到了不按教条行事的乐趣。量子多体系统的巍峨群山、森森林海和广阔原野就是他们自由自在驰骋的世界,转角石墨烯、拓扑序的模型与材料实现、非费米液体和量子临界金属等等胜地都是他们探寻路上行经的风景。

UUID: 79b359e9-5b65-4f56-8190-bf76b67d0771

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院物理所公众号-pdf2txt/2020/中科院物理所_2020-11-14_「转」蒙蒙卡和张量量|量子多体中的呐喊与彷徨之六.txt

是否为广告: 否

处理费用: 0.0082 元