最新的缪子反常磁矩实验测量结果与标准模型理论预言偏离4.2σ,提供了新物理存在的重要证据。然而要确认新物理的存在,实验和理论还需要进一步提高精度。运行在量子色动力学微扰与非微扰过渡能区的北京谱仪实验能够约束缪子反常磁矩理论计算中最重要的误差来源——强相互作用的修正。文章介绍了缪子反常磁矩的实验与理论现状,特别是北京谱仪实验上相关研究成果,并展望了未来缪子反常磁矩的实验测量与理论计算。
最近高能物理学界最轰动的事件无疑是缪子反常磁矩实验测量结果的发布。2021年4月7日,费米国家加速器实验室宣布了最新的缪子反常磁矩实验结果,实验精度达到百万分之0.46(0.46 ppm),这个结果利用了费米实验室预期总获取数据的6%。与之前布鲁克海文国家实验室的测量结果联合,得到最新的缪子反常磁矩实验结果与目前描述粒子物理学最成功的理论——标准模型的预言偏离4.2倍标准偏差(4.2σ)。
4.2σ说明该偏差偶然发生的几率仅为几万分之一,是可能存在超出标准模型新物理的直接证据。
研究轻子的反常磁矩能够精确地检验粒子物理学的标准模型。缪子的质量约是电子的200倍,若有超出标准模型的新物理存在,在缪子的反常磁矩测量中贡献会更显著。三代轻子中陶轻子的质量最重,与新物理的耦合可能最强。然而,由于陶轻子的寿命很短,基于目前的技术手段,实验上很难有足够的统计量进行陶轻子反常磁矩测量,因此,对缪子反常磁矩的精确测量是当前寻找新物理最理想的场所之一。
在缪子反常磁矩的理论贡献中,强相互作用的贡献是最难计算的,包括强真空极化和光子—光子散射致强子过程两部分。由于描述强相互作用的量子色动力学的微扰特性仅在高能标下适用,而对缪子反常磁矩的贡献主要来自低能标的强相互作用影响,因此对于这部分贡献必须要用非微扰计算方法,如利用色散关系或从第一性原理出发的格点QCD理论计算。
北京谱仪实验作为我国第一个大科学装置,北京正负电子对撞机和北京谱仪运行在质心能量2—5 GeV,该能量范围覆盖了QCD微扰与非微扰的过渡能区,物理研究内容独特且丰富。该装置建成以来的30多年里,产出了丰硕且备受国际关注的物理成果,也培养出了一批又一批的专业人才。
未来实验和理论上对缪子反常磁矩的测量精度将进一步提高,费米实验室将利用全部的数据,能够使实验精度再度提高四倍。理论上,强相互作用的贡献也将在正负电子对撞机实验上进一步提高精度。