电磁超散射和隐形门

作者: 陈焕阳

来源: 中国物理学会期刊网

发布日期: 2022-12-25 17:25:57

本文介绍了基于变换光学的幻象光学器件,特别是电磁超散射现象和隐形门的发展历程。通过变换光学的折叠几何变换,实现了物体的散射截面远大于其几何截面的超散射现象,为实现“穿墙术”提供了可能。文章详细描述了超散射和隐形门的理论设计、实验验证及其在自由空间中的应用前景。

陈焕阳

中科院物理所

2022-12-25 17:25:57

转自公众号:中国物理学会期刊网

作者:陈焕阳

1,段琦琳1,伍瑞新2,马红孺3

(1 厦门大学物理科学与技术学院)

(2 南京大学电子科学与工程学院)

(3 云南大学物理与天文学院)

本文选自《物理》2022年第12期

摘要基于变换光学的幻象光学器件能够表现出自然界中不存在的现象,如隐身、超散射和隐形门等。

其中电磁超散射现象利用变换光学中的折叠几何变换,使得物体的散射截面远大于其几何截面,颠覆了人们对于传统散射中散射截面通常小于散射体几何截面的认知。这一现象也为现实中实现“穿墙术”提供了可能。文章着重介绍了基于变换光学的超散射的发展历程以及利用超散射实现隐形门的方法。隐形门在自由空间的实现为将来幻象器件的设计提供了新的思路。

关键词

超散射,隐形门,变换光学,超材料

1

引言

许多影视和文学作品中对于“隐身”的描绘令人心驰神往,其中最著名的当属《哈利波特》中的隐身衣,当披上隐身衣即不为外部所见。人能感知到物体是由于接收到了物体反射的光,因此隐身的关键就是对于光的操纵。穿墙术在神话中指人作为主体具有穿过实体墙的超能力,现实中“穿墙”则需要通过改变墙的特殊光学性质来实现。对电磁波来说,穿墙术就是物体可以穿过一道特殊的门,而此门却不为观察者所见,即“隐形门”。

用隐形门实现的穿墙术与幻象光学息息相关。物体的幻象光学效应是指被观测到的物体和实际物体本身不同的一种光学现象,其中一个典型的例子是超散射效应,散射体的散射截面被极度增大[1],即对观察者而言物体的尺寸变得很大。2009年,上海交通大学马红孺/罗旭东课题组在研究中首先发现超散射。理论研究表明,超散射体可以用补偿介质[2]结合变换光学的方法[3]加以实现。

这一方法已被用来设计许多奇妙有趣的幻象光学器件,如基于超散射效应的隐形通道或隐形门[4]、超吸收体[5]、非包裹隐身衣[6]和内窥镜[7]等,其中隐形门是最受关注的幻象光学器件。通过合理设计材料的介电常数ε和磁导率μ(或折射率n),2009年研究人员首先在理论上实现了隐形门。然而,此隐形门对所需材料的折射率分布要求极其苛刻[4],在实验上很难实现。

后来人们提出一种基于简化参数的隐形门设计方案[8],并用电路等效的方法验证了隐形门的存在性[9]。然而直至2021年,真正的隐形门才在实验上得到证实。南京大学伍瑞新课题组和陈焕阳合作,首次在微波频率的自由空间中验证了超散射现象,在实验中实现了电磁隐形门这一幻象光学器件[10]。

隐形门从首次的理论提出到最终的实验实现经历了十余年。本文将着重介绍隐形门的发展历程,主要从三个方面概述:首先是变换光学这一强有力理论的提出;其次是从准静态极限到电磁超散射的提出;最后是基于超散射效应的隐形门理论设计以及实验验证。隐形门在实验上的成功实现将为今后新型光场调控器件的应用和发展提供新的思路。

UUID: 433b97b8-6a54-4ec2-b201-53e3ba92aacf

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院物理所公众号-pdf2txt/2022/中科院物理所_2022-12-25「转」_电磁超散射和隐形门.txt

是否为广告: 否

处理费用: 0.0133 元