在固体理论研究早期,电子被认为是满足牛顿力学的经典粒子。随着20世纪前半段量子力学的逐步建立,微观粒子的波动性成为精确理解微观世界的关键。这也深刻影响了人们对晶体中电子的认识:电子以布洛赫波的本征形式存在于晶体中,而其粒子性则以波包形式在大于晶格间距的空间尺度上存在。自1980年以来,人们发现布洛赫波的几何相位在固体理论中不可或缺,这进一步完善了晶体中电子的粒子观。
人们对固体物理中电子的认识已历时百年。早期,旧量子论的先驱索末菲把量子统计引入自由电子气理论,解决了电子的比热和热输运问题中的困难。接着,布洛赫结合量子波动方程与固体中的周期性势场,提出了布洛赫粒子的概念。基于此,人们初步勾画出了金属、半导体、绝缘体的基本图像。二战后,又经过几十年的努力,人们细致地梳理了电子的多体相互作用,展开了对布洛赫态的第一性原理计算。
同时,人们也系统研究了布洛赫能带在外场下的量子响应,并重拾布洛赫粒子的波动诠释。上世纪80年代,索利斯等人对量子霍尔效应的研究开启了对布洛赫电子的拓扑性质的关注。与此紧密相关,贝里相位与贝里曲率对布洛赫电子的影响也逐渐明确,重塑了人们对固体中电子的认识。布洛赫理论还可以描绘绝缘体和半导体。
威尔逊注意到,如果一个能带被电子整个填满,则总电流为零;在电场作用下,动量在能带中循环,并不改变能带的填充,总电流仍然为零。这样,如果所有的能带要么空着要么完全填充,这个材料就是绝缘体。这个情况就像原子的量子模型里填满了的壳层表现出惰性一般。但是,以后我们会讲到,上述考虑忽略了布洛赫电子的拓扑几何效应,动量的循环其实可以导致垂直于电场方向一个量子化的反常霍尔电流。
经典的牛顿粒子观在原子尺度上失效,但经过量子统计和波动力学的改造以及多体作用的锤炼,电子在更大的尺度上以新的粒子形态出现。其动量被局限在一个有限的区域内,能量则被隔离成一条条能带。当一条能带被电子占满,它就表现出惰性,不再参与导电和导热。金属中电子占据的最高能带里有个代表电子最高单体能量的费米面。常温下只有费米面附近少数电子可被激发,参与对外场的响应。