当数学和物理联手,会搞出什么大事情呢?(下)

作者: Kevin Hartnett

来源: https://www.quantamagazine.org/the-mystery-at-the-heart-of-physics-that-only-math-can-solve-20210610/

发布日期: 2021-06-22 10:30:00

量子场论(QFT)不仅在物理学中发挥了重要作用,还对数学产生了深远影响。QFT促进数学发展的一般模式是:物理学家在研究中偶然发现令人惊讶的计算结果,然后数学家试图给出解释。QFT与几何学有着密切关系,通过研究量子场,可以了解到表面的整体性质,如孔洞数量。尽管QFT的核心思想仍未完全被数学家理解,但数学家们正努力将其转化为一种内部激励工具,以便更深入地研究其数学特性。

当数学和物理联手,会搞出什么大事情呢?

即便在理论不完备的状态下,量子场论(QFT)也引发了许多重要的数学发现。QFT促进数学发展的一般模式是:使用QFT的物理学家偶然发现了令人惊讶的计算,然后数学家试图给出一些解释。

在基本层面上,物理现象与几何学有着密切的关系。举一个简单的例子,如果你把一个运动的小球放在一个光滑的表面上,它的轨迹将对应出表面上任意两点之间的最短路径,这种特性称为测地线。这样一来,物理现象就可以检测出某种形状的几何特征。

现在我们用电子代替之前说的小球。电子以某种概率存在于表面上的每一点。通过研究包含这些概率的量子场,你可以了解到表面的整体性质(用数学家的术语来说是流形),比如它有多少个洞。这是从事几何学和拓扑学相关领域的数学家想要回答的一个基本问题。

在20世纪70年代末,物理学家和数学家开始应用这种观点来解决几何中的基本问题。到了90年代初,塞伯格和他的合作者爱德华·威滕(Edward Witten)弄清楚了如何使用它来创建一个新的数学工具——现在我们称之为塞伯格-威滕不变量,它将量子现象转化为一个形状的纯数学特征的指标:通过计算量子粒子以某种方式表现的次数,可以有效地计算出了形状中的孔洞数量。

另一个两种学科交叉的例子也出现在20世纪90年代早期。当时物理学家正在进行与弦理论相关的计算,他们根据本质上不同的数学规则,在两个不同的几何空间中进行这些运算,并不断生成精确的长串数字,这些数字彼此吻合得很好。数学家们抓住了这条线索,把它发展成一个全新的研究领域,叫做镜像对称。数学家用它来研究一致性以及其他许多类似的问题。

然而,尽管QFT已经成功地为数学创造了线索,但它核心思想的大部分仍然存在于数学之外。数学家们有方法去使用多项式、群、流形和其他学科的支柱(其中许多也同样起源于物理学),但是对于量子场论,数学家们理解得还不够好。

对于物理学家来说,这种与数学的遥远关系是一种迹象——对于这个他们创造出来的理论,物理学家们还需要去了解更多。在过去的世纪里,物理学中使用的每一个概念在数学上都有其天然的地位——除了量子场论。

而对于数学家来说,QFT和数学之间的关系似乎应该比偶尔的互动更深。这是因为量子场论包含了许多对称性,或者说潜在的结构,它们决定了场的不同部分中的点是如何相互联系的。这些对称性具有物理意义——它们体现了量子场随时间演化时像能量这样的物理量是如何守恒的。同时它们本身也是数学上有趣的研究对象。

数学家已经利用对称性和几何的其他方面来研究从不同类型方程的解到质数分布的所有问题。通常,几何会将数字问题的答案编码。QFT为数学家提供了一种丰富的新型几何对象,如果他们能直接着手处理,那就不知道他们能做什么了。

数学不会轻易接受新学科。许多基本概念都经过了长时间的考验,才在这一领域中确立了其应有的、规范的地位。以实数为例——它是数轴上无限多的所有刻度。人们通过将近2000年的数学实践,才在定义它们的方法上达成一致。最后,在19世纪50年代,数学家们确定了一个精确的五字陈述,将实数描述为一个“完备有序域(complete ordered field)”。

为了将QFT转化为一种内部激励——一种他们可以用于实现他们自己目的的工具——数学家们希望对QFT给予与实数相同的处理:任何特定的量子场论都需要满足的一个严格的特征表。

把QFT的一部分转化成数学的许多工作来自圆周理论物理研究所的数学家凯文·科斯特洛(Kevin Costello)。

2016年,他同别人合著了一本教材,这使得微扰QFT理论有了坚实的数学基础——包括形式化地描述了如何处理随着相互作用增强而出现的无限量。这项工作是在2000年代早期的一项叫做代数量子场论的研究的基础上进行的,该理论也是在寻求类似的目的。所以现在虽然微扰QFT仍然不能真正描述宇宙,但数学家知道如何处理它产生的没有物理意义的无穷大。

科斯特洛也一直致力于定义什么是量子场论。简单地说,量子场论需要一个几何空间,在这个空间中,你可以在每个点上进行观测,并结合相关函数来表示不同点的观测值是如何相互关联的。科斯特洛的工作描述了一组相关函数需要具备的性质,以便将此作为量子场论的可行基础。

最常见的量子场论,如标准模型,包含了并非在所有量子场论中都存在的附加特性。缺乏这些特征的量子场论可能描述了其他尚未发现的性质,这些性质可以帮助物理学家解释标准模型无法解释的物理现象。如果你对量子场论的看法过于接近我们已知的版本,你甚至很难想象其他必要的可能性。

这项工作还有很长的路要走。到目前为止,所有的量子场论都是用数学术语来描述的,它们都依赖于各种简化——这使得它们更容易进行数学处理。

但这并不能阻止数学家和物理学家不断为之努力奋斗。对于数学家来说,QFT是一种和他们所预想的一样的丰富的研究对象。定义所有量子场论所共有的特性几乎肯定需要合并数学的两大支柱:解释如何控制无穷的分析方法和为讨论对称性提供语言的几何学。

如果数学家能够理解QFT,谁也不知道在这一过程中有什么样的数学发现在等待着数学家们。很久以前,数学家定义了其他对象的特性,如流形和群,现在这些对象几乎渗透到数学的每个角落。当它们第一次被定义时,不可能预料到它们所有的数学结果。QFT至少在数学方面有着同样的希望。

对于物理学家来说,对QFT的一个完整的数学描述体现了他们领域最重要目标的另一面:对物理现实的完整描述。现在数学家要做的就是将其揭示出来。

UUID: b6787064-0c6d-4907-9774-06efa1653e78

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院物理所公众号-pdf2txt/2021/中科院物理所_2021-06-22_当数学和物理联手,会搞出什么大事情呢?(下).txt

是否为广告: 否

处理费用: 0.0073 元