地球物理学和现有的化石记录表明,生命很可能起源于45~38亿年的冥古宙时期。然而,导致当时出现复杂化学性质的环境条件却鲜为人知。氨基酸是蛋白质和所有细胞生命的原料,为了理解生命的起源,许多科学家试图解释氨基酸是如何形成的。
早期的生命起源理论认为,最初的非生物分子可能起源于一个“温暖的池塘”,里面充满了丰富的甲烷(CH?)、氨(NH?)、水(H?O)等化学物质,它们受到闪电、热量这些外部能量源的激发,导致化学不平衡,进而形成了有机分子。著名的米勒-尤里实验证实了这种理论。
上世纪50年代初,芝加哥大学的坦利·米勒(Stanley Miller)和哈罗德·尤里(Harold Urey)进行了一项实验,他们在密闭的腔室内充满水、氨、氢和甲烷,然后反复用电火花来模拟闪电。一周后,他们分析了腔室的内容物,发现有20种不同的氨基酸已经形成。
虽然二氧化碳和氮气也能产生氨基酸,但这两种分子需要更多能量才能分解,而且产生的氨基酸数量也会大大减少。在寻找其他的能量来源过程中,科学家们已经分析过热能、紫外线、电离辐射,以及来自流星的激波。
一个国际团队在《生命》杂志上发表了一篇新的论文,他们利用NASA的“开普勒计划”所收集到的数据,以及一系列化学实验发现,很可能是太阳的高能粒子与地球早期大气中的气体的碰撞,形成了蛋白质和有机生命的基本组成部分——氨基酸和羧酸(氨基酸的前体)。
利利用这些观测数据,天体物理学家Vladimir Airapetian在2016年发表了一项研究,表明在地球的前1亿年里,太阳的亮度比现在暗30%左右;另外,现如今每一百年左右才会出现一次的太阳“超级耀斑”,在那时每隔3~10天就会爆发一次。超级耀斑发射出接近光速的粒子,这些粒子会定期与我们的高层大气相撞,引发化学反应。
他们发现,只要甲烷的比例超过0.5%,用质子(太阳粒子)撞击过的气体混合物就能产生可侦检数量的氨基酸和羧酸。但是通过电火花放电(闪电)则需要甲烷浓度达到大约15%才能形成氨基酸。而且即使甲烷含量达到15%,闪电所生氨基酸的速度也只有质子的百万分之一。不仅如此,与电火花放电相比,质子撞击也更倾向于产生更多的羧酸。
总的来说,新的研究表明,我们活跃的年轻太阳,比之前认为的还要更轻易地,甚至可能更早地催化生命的前体。