想象一下,如果有一个微微弯曲的软质曲面,类似一片隐形眼镜,而我们想把它压平,它的表面就会出现一些“多出来”的材料,进而产生褶皱。但是,这些褶皱会在什么地方出现?它们又会以怎样的方式排列?这些我们都不清楚。
褶皱背后的科学原理通常被认为非常复杂,同时,当物体出现褶皱后,它的一些性质往往也会改变,如果想用模型模拟它们,情况也在不断变化。但近期,一项新研究利用实验、模拟外加数学证明发现,通过一些简单的几何学,就有机会预测这些褶皱的模式,包括它们将在哪里形成,以及在某些情况下它们的方向。论文已于近期发表在《自然·物理学》上。
探索几何原理
对一个曲面来说,曲率可以简单理解成衡量它“有多弯”的标准。曲率可以是正的,比如圆球形状的棒球或地球仪,它也可以是负的,比如马鞍的形状。还有一些是平面材料,就像我们熟悉的一张纸。
在这项研究中,团队把重点放在具有正曲率和负曲率的弯曲外壳,重点分析材料的物理形状和曲率对褶皱的模式可能产生多大的影响。他们在像球体或马鞍形状的弧形玻璃表面上放置一块平坦的塑料片,然后旋转它,使塑料片变薄并塑形。然后,他们把塑料片放在水面上,水的张力可以提供一种稳定的压扁的力,使表面形成褶皱。
对于每种形状,研究人员会根据研究出的基本原理来解决理论问题,然后得出预测结果。基于这些发现,他们随后又进行了模拟,将各个形状和相关参数输入一个计算机程序。
通过大量模拟和实验,以及不断完善过程并扩展原始理论,团队逐步发现,通过应用一些直接的几何原理,他们就可以提前预测出褶皱的模式,以及一个被称为“有序”褶皱的子集的皱纹走向。
研究人员的希望继续深入了解这些复杂的纹理表面,比如,如何从那些无序的褶皱中提取模式,为什么有序和无序的域可以共存,等等。但无论如何,发现一个复杂问题的简洁且优美的解决方案,这本身就非常令人兴奋。