历经三十五亿年的深入“研发”,大自然“发明”出了各式各样应对不利条件的巧妙解决方案,譬如通过粘性来抵抗引力,或利用糖分从长达一个世纪的脱水环境中幸存下来。有时候,生命系统甚至直接赋予人类科学家和工程师们以灵感,启发他们研发出了各种新技术。
1941年,瑞士电气工程师乔治·德·梅斯特拉尔从阿尔卑斯山打猎归来后,发现自己的衣服以及猎犬的皮毛上都粘上了牛蒡毛刺。
这种粘附在路过的生物身上的机制,是牛蒡远距离散播种子的方式。梅斯特拉尔将毛刺放在显微镜下进行观察,发现正是一些简单的钩子结构,让毛刺粘附在自己的袜子和猎犬皮毛上。这赋予了他灵感。梅斯特拉尔用各种材料的钩子和圆环进行了无数次试验,十年之后,终于获得了一种新织物搭扣的专利,这种织物搭扣就是我们现在所知的维可牢。
壁虎抗地心引力的抓握秘诀在于脚趾上成排的微小刚毛。这些刚毛可以依靠粘性的范德华力依附在任何表面,范德华力只在微观尺度上发挥作用。这种吸附方式的优势在于可逆地强力抓握,而且不需要使用任何粘合剂。近年来,工程师们已经成功地使用硅胶模拟出类似的刚毛结构,从而推动了各式各样壁虎皮肤模拟技术的出现。
在波士顿的一家礼品店中,生物学家弗兰克·费什注意到一尊座头鲸雕塑的鳍周围有隆起,他以为是艺术家犯的一个错误。这些隆起不是出现在鳍的后沿,而是顺着前沿延伸。不过事实证明,这位艺术家的观察是正确的。这排疣状脊线可以产生帮助鳍在水中划动的微小漩涡,同时也解释了座头鲸在水中令人惊奇的敏捷性。
受到鲨鱼皮肤上微小鳞片的启发,美国宇航局科学家发明了一种船用减阻涂层。此项技术帮助星条旗号赢得了1987年美洲杯帆船赛的冠军。这种涂层的减阻效果是如此成功,以致于比赛主办方认为它属于不公平的优势,并一度禁止运用这项技术,但后来又撤销了这一决议。
上世纪九十年代,日本工程师中津英治发现翠鸟能够高速潜入水中,却不溅起水花。于是他仿照翠鸟喙设计出了新干线子弹头列车,这种设计不仅降低了火车的噪音,而且更加符合空气动力学原理,在降低能耗的同时还能提升车速。
凭借类似转子的设计,枫树种子会打着转儿从空中掉落——通过旋转产生的升力使得它们能够飞行至距离枫树更远的地方。洛克希德·马丁公司采纳这种设计,研制出了一款名为Samarai的单旋翼无人机。这款设计简单的无人机仅有两个活动部件,因此可以轻易地予以小型化。
在荒野山坡不平坦的地面或火星的崎岖地貌上,“腿”能够“走”到轮子去不了的地方。基于对自然造物和猎豹身体结构的研究,美国国防部高级研究计划局发明了一系列的四足机器人,它们可以在战场上飞奔着运送补给。与此同时,美国宇航局也在开发一种名为ATHLETE的六足机器人。
无需接到任何指令,蜂巢里的蜜蜂本能地知道有哪些工作需要做并付诸行动——这源于它们身处蜂巢的位置和周围其他蜜蜂正在做的事。美国雷根能源公司就采用了这种“群逻辑”,来改进电力网络的效率。
缓步类动物是一种生活在水中且生命力极强的八足微小生物。当处于缺水的环境中,它们会脱水,但与此同时,它们也进化出了可在缺水一百多年之后奇迹复活的神奇能力——通过将体内的分子如DNA和蛋白质包裹在一种糖内来实现。旧金山Biomatrica公司和英格兰Nova Laboratories等多家生物技术公司,都采用了类似的技术来保存活疫苗,而无需冷冻。
非洲白天的气温可高达40℃,夜晚又会降至2℃以下。
为了让土丘巢穴保持在相对恒定的温度,非洲白蚁进化出了精巧的筑巢本领:通过在顶部和侧面开凿出一连串的通风孔,为自己的土丘打造出了被动冷却系统,风可以将地下巢穴的热空气通过通风孔带出建筑体。白蚁们甚至还会依靠打开或关闭通道来控制气流。建筑师米克·皮尔斯在设计东门中心时就采用了类似的策略,东门中心是一栋位于津巴布韦首都哈拉雷的办公综合建筑。
借鉴白蚁的解决方案,热空气可从建筑物顶端成排的烟囱中排出,而较冷的空气则被导向地下。整栋建筑没有使用空调就能保持凉爽,相比同等规模的传统建筑,它只需要使用十分之一的电能。