Pi Day(3.14)刚刚过去,我们也奉上一篇和Pi有关的译作《π与最美的数学公式》,展示科学最单纯的美。据说文章每多一个方程,读者就会减少一半,不过小编很自信,因为下面列举的都是最美的。
今天我想谈谈π和数学意义上的的美。要谈论这个,还有比十八世纪著名的欧拉公式更好的例子吗?注意e指的是自然对数的底数。i是虚数单位,也就是-1的平方根。这个公式经常被叫做“最美数学公式”,不过其实欧拉并没有真正的确切的把它写出来过。相反,它是欧拉在证明指数增长和圆周运动的等价性时用到的公式的一种特殊情况。
美国理论物理学家理查德·费曼称其为“最引人注目的数学公式”。欧拉社会的创始人——Ed Sandifer 曾在2007年的一篇好玩的文章中详细讨论了欧拉超过四十多年的方法,尝试去说明这个公式到底在干什么。在这里我将尽量用最少的公式来讲清楚这个故事。
欧拉公式包括了五个基本的数学常数0,1,i,e和π,以及它们之间的等号,加号和指数,以一种神秘而又有用的方式,组成了一
个七字符的公式。它的等价形式也可以写成:重写过的欧拉公式。这个形式甚至更加简洁并且介绍了负数。
数学的一个共同特征是:发现总是首先被使用,然后才是被理解。18世纪法国数学家达朗贝尔写过代数是慷慨的,她经常给我们的答案超过了我们所问。让我介绍一下构造欧拉公式的这些砖块的2000多年的历史。你不必去理解确切的数学,只要了解一下这些不同元素的不同起源,以及它们是怎么如此紧密地结合起来的。
正如你看到的,要看到这个公式的美我们必须理解这个公式的元素,至少是大概的理解。罗素在他的《西方哲学史》上这样说:“恰当的说,数学不仅涵括真理,亦表现最高等的美——这种美冷静而简朴,宛若雕塑,不诉诸我们任何柔弱的本性,没有绘
画中亦或音乐中的华丽绚烂,但是纯粹得庄严,只有最伟大的艺术才能展示其严格的完美。”
大多数数学家都同意,一个美丽的公式一定是意料不到的,简洁的和有用的,有一种专业数学家能够感知到的高超的巧妙。如果不得不列出来的话,大多数数学家会列出阿基米德,高斯,欧拉作为自古以来最杰出的五位数学思想家。另外两个是艾萨克·牛顿(微积分和力学)和波恩哈德·黎曼(黎曼几何和黎曼假设)。
同时拥有三位杰出的思想家和基本常数。难怪欧拉公式被人们崇拜地叫做最美丽的数学公式。