机器学习与量子计算结合,将开出怎样的花朵?

作者: Davide Castelvecchi

来源: Nature Portfolio

发布日期: 2024-02-03 18:31:21

科学家正在评估量子机器学习的潜力,但人工智能与量子计算的结合是否具有实际用处仍不清楚。量子计算机能比普通数字化电子产品更快地解出某些问题,因为它们能利用亚原子世界的独特性质。机器学习这种人工智能(AI)技术使用计算机发现数据模式,学习规律,从而能在陌生场景中做出推断。量子计算机的规模和算力也在迅速扩容,随着这两项技术的突飞猛进,两者结合会产生怎样的效果呢?

科学家正在评估量子机器学习的潜力,但人工智能与量子计算的结合是否具有实际用处仍不清楚。

如果量子计算机能大规模建造,它们就能比普通数字化电子产品更快地解出某些问题,因为它们能利用亚原子世界的独特性质。多年来,研究人员一直在思考这些问题是否也包括机器学习。机器学习这种人工智能(AI)技术使用计算机发现数据模式,学习规律,从而能在陌生场景中做出推断。

家喻户晓的AI系统ChatGPT就是利用机器学习推断文本中字词间的关系,从而生成“人类般”的对话。量子计算机的规模和算力也在迅速扩容,随着这两项技术的突飞猛进,两者结合会产生怎样的效果呢?

许多科技公司,包括谷歌和IBM这种大公司以及加州Rigetti和马里兰州IonQ这类初创公司,都在为量子机器学习的潜力下注。学术界对此也热情高涨。

瑞士日内瓦近郊的欧洲粒子物理学实验室CERN已经在用机器学习从大型强子对撞机产生的数据中寻找特定亚原子粒子产生的迹象。那里的科学家是正在实验量子机器学习技术的科学家之一。CERN负责领导量子计算和机器学习研究组的物理学家Sofia Vallecorsa说:“我们想用量子计算机给经典机器学习模型提速或进行改进。”

这里的一个重要问题是,是否存在量子机器学习比经典版本更有优越性的具体场景。理论显示,对于特定的计算任务,如模拟分子或寻找大整数的质因数,量子计算机能加快运算速度,不然运算时间可能会比宇宙存在的时间更久。但研究人员仍然缺少充足证据证明机器学习也符合这种情况。其他人则认为,即使量子机器学习的速度不见得更快,但它可以发现经典计算机发现不了的模式。

研究人员对量子机器学习的态度处于两个极端,就职于加拿大量子计算公司Xanadu的南非物理学家Maria Schuld说,大家对这项技术很感兴趣,但似乎因为看不到短期前景而纷纷后撤。一些研究人员转而关注在本质上属于量子的现象中应用量子机器学习算法。在目前提出的量子机器学习的所有可能应用中,这是量子优势最明显的领域,麻省理工物理学家Aram Harrow表示。

过去20年里,量子计算研究员开发了很多量子算法,这些算法理论上有望提升机器学习的效率。但在某些方面,量子算法的承诺并未兑现。一个著名事件是计算机科学家Ewin Tang在2018年提出的一种方法打败了2016年设计的一个量子机器学习算法。这个量子算法的最初设计目标是让Netflix这类网络购物公司和服务能基于用户既往选择做出相关推荐,并且其推荐速度较当时任何已知的经典算法有了指数级提速。

当时只有18岁的Tang还在得克萨斯大学奥斯汀分校读本科,她写了一个速度差不多的算法,但用普通计算机就能运行。量子推荐是算法在实际问题上显著提速的一个罕见特例,所以她的算法让实际的机器学习问题实现指数级量子提速的目标比以往更触不可及,Tang的导师、量子计算研究员Scott Aaronson说道。目前在加州大学伯克利分校的Tang表示,她仍然对任何声称机器学习能实现大幅量子提速的说法深表怀疑。

一个更大的问题是,经典数据和量子计算有时候并不兼容。大致而言,量子计算的经典应用主要有三步。第一步是量子计算机的初始化,也就是其单个存储单元,即量子比特(qubit)处于集体纠缠量子态。第二步是量子计算机执行一连串运算,也就是对经典比特进行逻辑运算的量子版本。第三步需要量子计算机进行读出,比如测量携带量子运算结果信息的单个量子比特的状态。这可以是计算机内的某个电子是顺时针自旋还是逆时针自旋。

Harrow写的这类算法承诺在第二步实现提速,也就是量子运算。但在许多应用中,第一步和第三步有时候会非常慢,抵消这种提速。初始化的步骤要求在量子计算机上加载“经典”数据,并转换成量子态,这个过程常常很慢。而且由于量子物理学本身具有概率性,所以读出往往有随机的成分,这会让量子计算机需要多次重复这三个步骤,并对结果取平均值,才能得到最终答案。

完全在量子世界中收集和分析数据或能让物理学家解决经典测量只能间接回答的问题,Huang说。其中一个问题是特定材料是否处于能成为超导体的特定量子态——超导体能零电阻传输电力。而经典实验要求物理学家间接证明超导性,比如通过测试这种材料对磁场的反应。

粒子物理学家还在尝试用量子传感处理未来粒子对撞机产生的数据,比如DESY让电子和光子对撞的LUXE实验,不过这种想法距离实现至少仍有十年时间。相距遥远的天文台也可以用量子传感器采集和传输数据,这需要用到未来“量子互联网”技术,将数据传输到中央实验室的量子计算机上处理。这么做希望能捕捉到清晰度无与伦比的影像。

归根结底,量子计算机是否能为机器学习带来优势,要由实验决定,而不是看这种优越性是否有数学证据。Harrow说:“我们不能期望用做理论计算机科学的方式来证明一切。”Aaronson说,“我绝对相信量子机器学习是值得研究的”,无论最后是否能提速。Schuld也认同,“我们需要在没有提速要求的限制下做研究,至少暂时不要有这个要求。”

UUID: ad1ab662-8370-4498-83fa-297b0b8ea4b4

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/赛先生公众号-pdf2txt/2024/赛先生_2024-02-03_「转」机器学习与量子计算结合,将开出怎样的花朵?.txt

是否为广告: 否

处理费用: 0.0062 元