磁性量子材料的缺陷工程及其局域量子态自旋的调控,有望构筑未来实用化的自旋量子器件,是目前凝聚态物理研究的热点领域之一。近几年,基于过渡金属的笼目晶格化合物是揭示和探索包括几何阻挫、关联效应和磁性以及量子电子态的拓扑行为等在内的丰富的物理学性质的一个新颖材料平台。
在这些近层状堆叠的晶体材料中,过渡金属元素原子呈三角形和六边形在平面内交替排列,形成了独特的拓扑结构,例如具有狄拉克锥的电子能带结构特征和强自旋轨道耦合的平带特征等。并且,这些材料表现出铁磁、反铁磁以及顺磁等丰富的磁性基态。因此,它们成为人们广泛研究的对象。Co3Sn2S2作为首个理论预言与实验证实的具有内禀磁性的外尔费米子拓扑体系,展现出了一系列独特的拓扑物性。
表面依赖的拓扑费米弧和局域无序诱导的内禀反常霍尔电导率升高,使其成为研究缺陷激发及其拓扑特性相关性的理想平台。
最近,高鸿钧院士课题组的博士研究生邢宇庆、陈辉副研究员和黄立副研究员等人与M05组刘恩克研究员指导的博士生申建雷及美国波士顿学院的汪自强教授密切合作,通过极低温-强磁场-自旋极化扫描隧道显微镜/谱和低温-原子力显微镜的联合研究,研究了磁性外尔费米子系统Co3Sn2S2中的单原子缺陷附近的激发态。
他们发现了一种新的激发态,即局域化的自旋轨道极化子(Spin-orbital polaron, SOP)。自旋轨道极化子发现为磁性外尔体系中磁序与拓扑性质的调控开辟了新的路径,在新一代复杂功能量子器件的开发方面具有极大的应用前景。