洪水是最常见的自然灾害类型,全球有近 15 亿人(约占世界人口的 19%)直接面临严重洪水事件的巨大风险。洪水还造成巨大的物质损失,每年造成全球经济损失约 500 亿美元。近年来,人类造成的气候变化进一步增加了一些地区的洪水频率。然而,目前的预报方法主要依赖沿河而建的观测站,其在全球的分布并不均匀,这就导致未经测量的河流更难预报,其负面影响主要体现在发展中国家。
升级预警系统,使这些人群能够获得准确、及时的信息,每年可以挽救数千人的生命。那么,如何在全球范围内进行可靠的洪水预报?人工智能(AI)模型或许大有可为。如今,来自 Google Research 洪水预测团队的 Grey Nearing 及其同事开发的人工智能模型,通过利用现有的 5680 个测量仪进行训练,可预测未测量流域在 7 天预测期内的日径流。
随后,他们将该人工智能模型与全球领先的短期和长期洪水预测软件——全球洪水预警系统(GloFAS)进行了对比测试。结果显示,该模型同日预测准确率与当前系统相当甚至更高。此外,该模型在预测重现窗口期为五年的极端天气事件时,其准确性与 GloFAS 预测重现窗口期为一年的事件时的准确性相当或更高。
相关研究论文以“Global prediction of extreme floods in ungauged watersheds”为题,已发表在权威科学期刊 Nature 上。研究团队表示,该模型能对未测流盆地的小规模和极端洪水事件做出预警,且预警期比之前的方法都更长,并可提高发展中地区获得可靠洪水预报的机会。提前 7 天,AI 是如何做到的?
据论文描述,该研究使用了一种叫做长短期记忆(LSTM)网络的人工智能模型来进行河流流量的预测。这个模型的设计有点像我们的大脑,它可以从一系列的气象数据中学习并预测未来的河流流量,分为编码器和解码器两部分。首先,编码器负责从上一段时间内的气象数据中提取信息,它从过去的天气情况中理解河流流量的变化情况。然后,解码器部分使用这些信息来预测未来几天的河流流量。
它考虑了当前的气象预报,以及过去的天气对未来流量的影响。这样,就可以得到未来一周的流量预测。