纵观历史中孕育文明的地域和城市,几乎都离不开河流和运输。无论是连通南北的京杭大运河,还是贯穿东西的丝绸之路,都是因为有了运输,物资和文明才得以交流、发展和繁荣。而反观我们熟悉的流体力学,也正是因为有了流体的输运,才有了速度、温度、压力以及各种组分和物理量的传递和变化,进而产生了丰富的流场结构。
大家都知道常见的流体输运方式有对流和扩散,那么它们是如何传输流体的?它们之间又有什么关系?我们还是从最基础的雷诺输运定理开始讲起。雷诺输运定理在物理意义上和物质导数相同,实质上都是描述了流体的物理量伴随着流体而输运的含义。
流体的输运可以理解为一种流动的质量传递现象,主要包括对流和扩散两种方式。
对流是依靠流体整体的运动传送物理量,可以理解为宏观上的机械运动,一般情况下,根据是否有外力作用可以分为强制对流和自然对流。强制对流就是直接对流体施加压力或者刚体的转动和移动,强迫流体发生运动,比如在炎热的夏天,打开电风扇对着吹便是典型的强制对流。
而自然对流则表示没有外力强制作用的情况下,由于温度等参数的不均匀而形成的密度差,从而导致重力场或其他力场中产生浮升力所引起的对流现象,比如一碗热气腾腾的牛肉面。
不同于对流是宏观的流体运动,扩散本质上是微观层面上,由分子热运动驱动的。理论上,分子热运动是随机的,但是当流场中的分子浓度或者热力学压力不均匀时,比如下图所示的流体两侧的分子浓度不同,那么显然,从左侧向右侧运动的分子数多于反向的,因此形成了从高浓度向低浓度扩散的现象。
流体的运动无时无刻不与对流和扩散发生着联系,而对流和扩散又常常同时存在,那么它们之间究竟是怎样的关系呢?为了更好的描述流体输运过程中对流和扩散之间的关系,流体力学中将对流速率与扩散速率之比定义为一个无量纲数,命名为佩克莱数(Peclet number, 简称Pe数),其中扩散速率是指在一定浓度梯度驱使下的扩散速率。
佩克莱数表征了对流和扩散的强度之比,而对流扩散方程则在数学上描述了对流扩散现象。对流和扩散就好像流体输运的一幅车轮,传输着流场中各种各样的物理量,也形成了形态各异的流场结构,它们携手从复杂的雷诺输运方程中走来,又一起回到了简洁的雷诺数,仿佛一个完美的流体力学闭环。