当宇航员进入太空时,传统的钢笔、圆珠笔必须依靠重力将墨水漏入笔尖,因而无法使用。铅笔虽然可以正常书写,但微小的导体石墨粉可能带来灾难性的后果。现代的太空笔依靠气压将墨水压出。在神舟十三号的飞行任务中,翟志刚携带中国传统文房四宝进入空间站,将中华儿女骨子里的剑胆琴心展现得淋漓尽致。
要回答这个问题,我们要首先思考一番,毛笔是怎么书写的。答案看起来很简单:毛笔上面吸收了墨水,在笔尖与纸张接触的时候,墨水就从笔尖转移到了纸上。但是,如果深入思考,为什么只有当毛笔接触到纸张时,墨水才发生转移,其他时候呢?
实际上,墨水自动发生转移也是常有的事情。初学者有时候会一口气蘸上太多的墨水,墨水就会从笔尖上滴下来。毛笔蘸墨时会有特殊的技巧:只需把笔尖的一部分浸入墨中,这样可以保证只吸入适量的墨水,墨水就不会从笔尖滴落。所以,一支毛笔中能留住的墨水,有一个上限。
透过现象看本质,既然毛笔可以留住墨水,那么一定有一个机制来克服重力,这个机制会是什么呢?我们不妨看一看墨水分子受到哪些力。
由于毛笔笔尖是一个开放的区域,各处的大气压是平衡的,于是只需要考虑重力与分子之间的相互作用。分为两种,一部分是液体分子之间的互相作用,而另一部分是液体与容器壁分子之间的相互作用,使液体黏附或者疏离。两种相互作用都有摩擦力,微观上体现为电磁相互作用,如果在宏观上结合起来,就带来一种叫做毛细现象的神奇现象。
毛细现象是指,将一根毛细管浸入液体中,相比管外液面,管内液面会自发向上或向下发生移动。对于生活中常见的液体,例如水和酒精,它们在细管中均会上升。在化学实验配置溶液时,使用量筒读数时,视线应与凹液面最低处或者凸液面最高处平行。对于凹液面,由于水能浸润玻璃,因此会被吸附在容器边缘,再由于表面张力而沿着器壁自发移动,体现为上升,从而体现为边缘高,中心矮。
毛细现象第一眼看上去很违反直觉。人们常说,“水往低处流”,为什么水可以自发往高处移动?能量守恒定理告诉我们,能量不会凭空产生或消失,液柱上升的过程伴随重力势能的增大,因此一定能找到另一种能量,在这个过程中是降低的。没错,这种能量来自液体的表面张力。
首先考虑液体-气体(或者真空)的交界面。在界面两侧,液体分子的组合形式有很大的差异。在液体表面与内部,液体分子之间形成的相互作用很不相同。表面的液体分子互相连接更少,相互作用更弱,于是两侧受力不均。在这种受力不均的情况下,内部受力较大,将自发向外部“突出”,于是在不受重力的情况下,一团液体将呈现球形。在这种情况下,表面张力将使液体分界面变弯,使之达到能量最低的稳定状态。
综合液体分子之前的相互作用,以及液体分子与外部固体分子的相互作用,我们就得到了表面张力,并依据这两种相互作用的大小,将液体-固体分为浸润与否两类。
毛细现象实际上要求达到一种平衡:液体分子相互作用,与液体与表面相互作用的平衡。在达到这个平衡的过程中,液体表面会发生变形。毛笔的材料,兽毛,也就是蛋白质,像玻璃一样可以被水浸润。由于分子间相互作用不受重力影响,毛细现象在空间站里面自然也可以发生,于是毛笔在失重条件下,也可以一如既往地吸入墨水,并正常书写了。
从毛细现象的描述,我们可以直接得到两个推论:1. 由于阻力的存在,毛细现象并不能用来持续做功,一切“永动机”都是不可能实现的。2. 如果没有摩擦力,那么毛细管将不断把液体吸到高处,直到充满整根管子或者从顶部喷出。
液氦喷泉仍然满足能量守恒:当液氦从毛细管中喷出后,容器里的液氦温度会上升,这个现象被称为“机械热效应”。当超流液氦被加热到特定温度,也就是大约零下271℃(准确来说,大约是2.18K)时,超流液氦变成普通液氦,喷泉停止工作。整个过程相当于原来的化学能(本质上是电磁相互作用的势能)变成了重力势能与动能,而后再变为化学能。
对于那些极端憎水的材料,液体与容器壁之间吸引力很小,液滴就可以在表面自由滚动。荷叶表面充满纳米尺度的凸起,这些凸起导致水无法浸润荷叶,让水滴不会停留在这种水生植物的叶子上。
当我们放眼星辰大海时,前人那些充满创意的智慧也在看着我们。期待三位宇航员能平安愉快地度过太空中的半年,并创作出与地面上一样精美的书法作品。