新型冠状病毒(SARS-CoV-2)只是地球上无穷无尽病毒中的沧海一粟。科学家在快速确定大批新病毒物种。在非洲白蚁丘、南极海豹、红海水体中,Mya Breitbart都发现了多种新型病毒。但想要获得大发现,只要步入她位于佛罗里达家中后院。
在她家泳池漫步着乳突棘蛛(Gasteracantha cancriformis)——外形奇妙的蜘蛛,有着球形白色身体、黑色斑点、六根猩红尖刺,看起来像某种中世纪武器。作为南佛罗里达大学的病毒生态学家,让Breitbart更惊奇的是这种蜘蛛的内在。她和同事收集并磨碎一些蜘蛛样本后,发现了两种之前科学界未知的病毒。
虽然我们人类自2020年初开始特别关注一种尤其烦人的病毒,但是还有千军万马的其他病毒有待发现。科学家预计,任何时候仅在海洋中栖居的病毒颗粒就有约10^31个——是已知宇宙中恒星估计数量的百亿倍。我们逐渐明白,生态系统和生物体,都有赖于病毒。病毒轻如鸿毛,作用却重于泰山,他们跳转于宿主间,改变宿主基因,从而驱动了百万年的演化进程。在海洋里,病毒切开微生物,将内容物倾入大海,让食物网富于营养。
英属哥伦比亚大学病毒学家Curtis Suttle说:“要是没有病毒,人类不会存在。”Nature Portfolio——《自然》旗下期刊与服务集合,致力于服务科学界,我们提供一系列高质量的产品和服务,涵盖生命科学、物理、化学和应用科学。其中,《自然》杂志(Nature)创立于1869年,是国际领先的科学周刊。图示不同形状、大小的病毒,如巨型拟菌病毒(右上)、登月器形状的噬菌体(中心)。
国际病毒分类委员会(ICTV)只列有9110种已命名的病毒,这显然只是冰山一角。部分原因是,过去要正式分类一种病毒,要求能在宿主体内或宿主细胞内培养出这种病毒。即使这能做得到,也颇为耗时。另一方面,以往研究偏向于对人类或其他人类关心的生物致病的病毒,例如牲畜或作物。但是,新冠疫情给我们敲响了警钟,我们需更多理解那些能转换宿主、威胁到牲畜、农作物及人类自身的病毒。
过去10年来,已知且已命名的病毒数量剧增,这得益于发现病毒技术的进步,再加上确定新病毒物种的规则近期发生了变化,无需培养病毒及宿主即可命名病毒。宏基因组技术是影响最深远的技术之一,研究人员能利用这项技术提取环境基因组样本,无需培养单个病毒。更新的技术(如单病毒测序技术)进一步增补了病毒列表,包括一些很常见但直到如今才受到关注的病毒。做这类研究正赶上了一个激动人心的时代。
Breitbart说:“我认为,从各种意义上说,现在是病毒组学的时代了。”仅2020年,ICTV就在其正式列表中增加了1044种病毒,还有上千种正在等待描述和命名。基因组激增不仅促使病毒学家重新思考病毒分类的方式,还有助于澄清病毒的演化过程。强有力的证据证明,病毒出现过多次,而非单一起源。即便如此,Jens Kuhn说,病毒世界的真实范围大多未明。
他是美国国家过敏和传染病研究所的一名病毒学家,他说:“我们真的完全不知道那里有什么。”病毒无处不在,甚至科学家没找它们也会出现。Frederik Schulz在读取废水中的基因组序列时,并没有打算研究病毒。2015年时,他是维也纳大学的研究生,正用宏基因组技术寻找细菌。这项技术要从混合的生物体中分离DNA,分割成片段后全部测序,再通过计算机软件把片段组装成个体基因组,类似把上百块打乱的图块拼起来。
Schulz无法不注意到,在细菌的基因组中有一大块病毒基因组(非常明显,因为有病毒衣壳基因),拥有高达157万对碱基对。后来发现这是种巨型病毒,属于一类基因组和绝对尺寸都很大的病毒(通常直径200纳米以上)。这类病毒侵染变形虫、海藻等其他原生生物,因此处在一个能影响水陆生态系统的位置上,Schulz如今是美国能源部联合基因组研究所的一名微生物学家,他决定在宏基因组数据库中寻找相关的病毒。
Schulz及其同事在2020年发表的一篇文章中就描述了包含巨型病毒的群中2000余个基因组;在此之前,公共数据库中仅存有205个这样的基因组。病毒学家也在人体内寻找新病毒物种。病毒生物信息学家Luis Camarillo-Guerrero和维康桑格研究所的同事合作,分析了人肠道的宏基因组并建立了一个数据库,囊括了14万多种噬菌体,半数以上都是新发现的。
他们的研究于二月发表,发现感染我们肠道细菌的最常见噬菌体是一类被称为crAssphage的病毒(2014年以发现它的交叉组装软件命名),这一发现与他人的结果相符。Camarillo-Guerrero说,除了它们的丰富性外,人们对这类病毒对人体微生态有何影响所知甚少。他目前就职于DNA测序公司Illumina。宏基因组虽然检出了多种病毒,但忽略的也不少。
一般的宏基因组并不测RNA病毒,于是爱尔兰科克大学微生物学家Colin Hill及其同事,在名为宏转录组的RNA数据库中寻找RNA病毒。这些数据通常用于了解一个群体中正积极转录为信使RNA以制造蛋白的基因,但RNA病毒基因组也会从中出现。Colin Hill团队利用计算技术从数据中提取病毒序列,在淤泥和水体样本的宏转录组发现了1015个病毒基因组。
又一次,研究者们在单篇研究中大大增加了已知病毒的数量。虽说这些技术偶尔会整合出并不真实的病毒基因组,但是研究人员会利用质控技术防止这种情况。除此之外,还有其他盲点。举个例子,如果单个病毒基因组变化很大的话,这种病毒就很难为人发现,因为计算机软件很难把相距甚远的序列拼凑起来。另一种方法是每次只测一个病毒的基因组,阿利坎特大学的微生物学家Manuel Martinez-Garcia就是这么做的。
他决定尝试通过分选仪缓滴海水来分离单个病毒,扩增其DNA然后测序。第一次他发现了44个基因组,后来发现其中一种对应的是海洋中最丰富的病毒。这种病毒非常多样——其遗传拼图彼此差异巨大——所以宏基因组研究从未检出过其基因组。
研究团队将其命名为37-F6,这源于它最初实验室培养皿的编号,但Martinez-Garcia调侃道,既然这种病毒这么能藏,就藏在我们眼前,它就该跟着虚构的超级间谍詹姆斯·邦德,叫007。海洋病毒邦德缺个正式的拉丁种名,其实过去十年里,宏基因组发现的上千个病毒基因组大多都没有正式种名。发现这些序列让ICTV面临两难:单凭一个基因组够不够命名一种病毒?
到2016年,科学家仍需培养出病毒及其宿主,才能向ICTV提请一个新病毒物种、新分类种,很少有例外的情况。而在那年,病毒学家们经过唇枪舌战,最终达成共识:基因组就够了。于是新病毒、新种群的申请蜂拥而来(见“病毒家族壮大”)。但是彼此间的演化关系常不清楚。病毒学家主要根据病毒形状(比如说瘦长,或者有一头伴一尾)、基因组(DNA或RNA,单链或双链)给病毒分类,但这无法揭示多少关于共同祖先的信息。
举个例子,双链DNA病毒可能有至少4次独立起源。起初的ICTV病毒分类跟细胞生物谱系图截然不同,只涉及演化分级中较低的几级,从种、属到目——类似多细胞生物分类中灵长目或针叶树的等级。之前没有再高的等级了。而且很多病毒科都是独立存在的,跟其他病毒没有亲缘关系。因此,ICTV于2018年增添了更高的等级:纲、门、界。
最上层等级为“域(realms)”,对应的是细胞生物的“域(domains)”——细菌域、古细菌域和真核生物域——(英文)用词不同,用以区分两个演化树。(几年前,曾有科学家提出某些病毒可以融进细胞生物的演化树上,但这一想法没有得到广泛认同。)ICTV勾勒了病毒演化树的分支,并将RNA病毒归为核糖病毒域(Riboviria)。SARS-CoV-2及其他冠状病毒都是单链RNA基因组,因此属于此域。
但后面的种系分类,就要依靠病毒学家了。巧的是,美国国家生物技术信息中心的演化生物学家Eugene Koonin已经组建了一支研究队伍,分析所有病毒的基因组,结合病毒蛋白的最新研究,建立了第一版病毒分类系统。他们把核糖病毒域重新划分,提出增加另外三域(见“病毒域”)。Koonin说,虽然细节上有些争议,但这一分类法在2020年正式生效,ICTV成员多无异议。
2021年又批准了两个域,但他说原来的四域应该还是最大的。Koonin推测,最终病毒域的数目可能会达到25个之多。这个数字符合多位科学家的推测,即病毒没有单个的共同祖先。Koonin说:“病毒没有共同的单一根源。”就是说,病毒在地球上或许起源过多次——这种起源也很可能再次出现。Mart Krupovic说:“新病毒从头起源的事件仍在进行中。
”他是巴黎巴斯德研究院的病毒学家,曾参与ICTV新分类决策,也是Koonin分类研究团队的一员。病毒学家在域的起源上莫衷一是。一种说法是,他们在地球早期细胞成形前,各自衍生于独立的遗传片段。还有一种,他们是从完整细胞中脱离或“转移”出来的,丢弃了多数细胞器,实现最小限度的存在方式。Koonin和Krupovic两人支持两种假设的结合:原始遗传片段窃取了些细胞生物的基因,从而组装了自己的病毒颗粒。
因为病毒可能有多种起源,所以它们起源的方式也可能很多样,Kuhn说。他也曾是ICTV委员会成员,并参与了新分类法的提出。所以,虽然病毒和细胞演化树截然不同,但是二者的树枝相互交错、基因相互传递。病毒是否为“生命体”,取决于个人对于生物的定义。很多人认为病毒不是生命体,但也有人认为是。信息生物学家绪方博之(Hiroyuki Ogata)说:“我倾向于认为它们是生命体。
”他就职于日本京都大学,致力于病毒研究。“病毒在不断演化,他们的遗传物质包含了DNA和RNA,他们还对所有生物的演化都有重大意义。”大多数人认为,现在的分类系统还只是初次尝试。有些病毒学家觉得这个分法略显杂乱。而且还有很多个科没有归入六大域中。“好的方面是我们正在尝试梳理着这一团乱”,Martinez-Garcia说。
地球上病毒的总重量相当于7500万头蓝鲸,科学家很确定,病毒改变了食物网、生态系统乃至地球的大气层。加速发现新病毒的过程“成了道分水岭,揭示了病毒直接影响生态系统的新途径。”Matthew Sullivan说,他是俄亥俄州立大学的环境病毒学家。但是,科学家仍然难以量化病毒产生的影响。绪方说:“我们现在还无法简而言之。
”在海洋中,病毒拆开其微生物宿主,释放出碳,其他生物或病毒回收这些宿主体内物质并产生二氧化碳。然而最近科学家也发现,爆开的细胞常聚在一起,然后沉入海底,从而将碳封存,远离大气。Sullivan说,融化的冻土是陆地主要碳源之一,而且对于此环境下微生物的碳排放,病毒似乎作用重大。
2018年,他与同事描述了1907个源于瑞典融化永冻层的病毒基因组和片段,其中一些基因编码的蛋白,或能影响碳复合物如何分解以及潜在转变为温室气体的过程。病毒还能通过影响基因组来改变其他生物。比如说,病毒把耐药基因从一个细菌转到另一个后,后一种就成了耐药株。时间一长,这种转化就变成了种群中重要的演化改变,Camarillo-Guerrero说。这种影响不限于细菌——约8%的人类DNA源于病毒。
举个例子,我们的哺乳类祖先就从病毒那里获得了一个胎盘发育必须的基因。要想回答关于病毒的诸多问题,除了其基因组外,还需要更多的信息。他们需要找到病毒的宿主。病毒本身可能就带了些线索:比如,病毒可能在其基因组中携带着一小点宿主遗传物质。Martinez-Garcia和同事用单细胞基因组,确定了内含新发现的37-F6病毒的微生物。
它的宿主也是一种海洋中最丰富、最多样的生命体,是一种远洋杆菌属(Pelagibacter)的细菌。在一些水体中,这些细菌可占到存在细胞的一半。Martinez-Garcia说,即使只有这一种病毒突然消失,海洋生物系统也将彻底失衡。Alexandra Worden说,要想了解病毒产生的所有影响,科学家需要清楚病毒是如何影响宿主的。她是位演化生态学家,在德国基尔亥姆霍兹海洋研究中心工作。
她在研究一种巨型病毒,其携带的基因编码了视紫质(rhodopsin),一种捕光蛋白。理论上讲,这些基因能为宿主所用——用于能量转换、信号传递等——但仅凭序列并不能确认这一点。Worden为了探究视紫质基因的后续过程,计划一起培养宿主和病毒,研究二者在“病毒细胞(virocell)”态下,如何协同发挥作用。她说:“只有细胞生物学能确认其真正作用,以及这将如何影响碳循环。”回到佛罗里达。
Breitbart虽然还没有培养出蜘蛛病毒,但对它们的了解正在加深。这两种病毒极小的环形基因组令Breitbart啧啧称奇,它只编码了两个蛋白,一个是蛋白外壳,另一个是复制蛋白。其中一种病毒只在蜘蛛的躯干发现,从未在蜘蛛足里检出,因此,她认为这种病毒可能实际上侵染的是蜘蛛食用的某些生物。另一种则在蜘蛛的躯干、足、幼体中都有发现,因此她认为这种病毒可以由亲代传递给子代。
就Breitbart所知,这种病毒似乎没对蜘蛛造成什么伤害。说起病毒,“发现它们实际上是容易的部分”,她说。解析病毒是如何影响宿主生活史、影响生态就难得多了。但首先,她说,病毒学家需要回答的最难的问题是:“怎么选、选哪个来研究?”