新冠病毒为什么这么难对付?原因之一在这里

作者: 叶盛

来源: 科学大院

发布日期: 2021-08-12

本文深入探讨了病毒的本质、它们与细胞的差异、病毒的寄生特性以及人类如何对抗病毒。文章指出,病毒虽然不直接产生毒素,但它们通过利用宿主细胞的资源进行复制,导致细胞崩溃,从而对宿主造成伤害。尽管病毒难以对付,但通过免疫系统和抗病毒药物,人类仍有一定的防御手段。此外,病毒的高变异速度为药物研发带来了挑战,但也指出了关键环节作为潜在药物靶点的重要性。

新冠病毒为什么这么难对付?原因之一在这里。病毒有毒吗?病毒算是生命吗?病毒是怎样让人生病的?有药物能杀死病毒吧?病毒跟病菌有什么区别?读了那么多谈冠状病毒的文章,可你真的了解病毒吗?什么是生命?如果世界上没有病毒存在的话,上面这个问题的答案就很简单了——生命都是由细胞构成的。无论是单细胞的细菌、古菌、真菌,还是多细胞的绝大多数动植物,它们的生命活动都离不开细胞这个基本单元。

细胞的意义在于,它将“生命”这个概念圈在了细胞膜这样一道“围墙”里:墙内生机盎然,蛋白质催动着千万种生化反应,吸收利用能量,合成分解生物分子,维护复制遗传信息,有序度不断增加;墙外的世界则是生命的荒原,能量从高峰流向低谷,无序度不断增加。然而,病毒的存在给科学家们出了一道难题,让生命的定义变得模糊不清,因为它既像是生命,又不像是生命。

从构成上来讲,病毒像所有细胞生命一样是由蛋白质、核酸、磷脂这些生命分子组成的。这就意味着它们也是高度有序的存在,是消耗能量才能生成的产物。病毒也像细胞一样利用核酸分子来保存遗传信息。有些种类的病毒利用脱氧核糖核酸(DNA)作为遗传物质,有些则是用核糖核酸(RNA)作为遗传物质;有些病毒种类利用的核酸是单链,有些则是双链。

相比之下,细胞则要统一得多,无论是什么生命形式的细胞,遗传物质都是双链DNA,而RNA大体上只作为从DNA到蛋白质的中间环节而存在。甚至,病毒也有自己的“围墙”,以保持自己这个生命世界的独立完整。包围细胞的围墙各式各样,但一定都会具有由磷脂分子组成的细胞膜,上面还插有不少蛋白质,起着物质通道或信号探测器的作用。

病毒的围墙更是千差万别,但与细胞正相反的是,一定都会有一层完全由蛋白质分子组成的壳,称为衣壳。相对于柔软、流动的细胞膜而言,病毒的蛋白衣壳是坚实而固定的,还常常会搭建成正二十面体或螺旋体等结实的几何构型。尽管有着如此之多的相似之处,但病毒与细胞还是有一些本质上的差异。其中最重要的一点就在于能量的流动性上:如果说细胞是流动的生命,那么病毒只能算是静止的河流。为什么这么说呢?

让我们回到“什么是生命”这个问题上来,有人说:生命就是活的东西。那么再追问一句:什么算是“活”呢?显然,能否运动不是一个标准。不要说植物这些基本不会运动的生物,就连动物之中也有很多物种是一生固定不动的。但是,不管是什么生命形态的细胞,它的“围墙”之内一定是活的。细胞会直接利用葡萄糖这样的能量物质,或者像植物一样获取光能,然后再利用这些能量完成千千万万不同的生物化学反应。

一个小小的细胞里,小到两三个原子组成的氧分子与二氧化碳,大到数以万计的原子组成的蛋白质或核酸分子,它们都在不停地分解合成,再分解,再合成,周而复始,生生不息。从这个意义上来讲,病毒是“死”的。病毒只是把承载遗传信息的核酸分子,以及少量对启动复制过程有用的蛋白质分子,包裹在了一层蛋白质衣壳的硬壳之中而已。有些种类的病毒还会再在外面包上一层类似细胞膜的包膜,能够起到伪装自己的目的。

在病毒颗粒中,不存在正在进行的生物化学反应,没有能量的流动,也没有物质的合成分解,是一条“静止的河流”。病毒这样一个“死”的生命碎片,如果离开“活”的生命,那就永远只能保持“死”的状态。纵使病毒有遗传信息,却没有复制遗传信息的分子机器,也没有生产更多衣壳蛋白的分子机器,也就没法组装出新的病毒颗粒来。但是,干这些活儿的分子机器在活细胞里都有。

于是,病毒必须要入侵活细胞,利用活细胞的分子机器,以及能量和物质,才能生产出更多的病毒颗粒来。如果我们非要把病毒看作是一种生物,那么它就是彻头彻尾的寄生生物。一般的寄生生物往往只利用宿主的某种行为或身体的某个部分,而病毒利用的是宿主细胞的分子机器,甚至还能把自己的基因整合到宿主的基因组里。毫无疑问,病毒配得上“终极寄生者”的称号。病毒,是不是靠毒素让人生病的呢?

其实有很多致病细菌的确会释放一些有毒性的毒素小分子,令我们的部分身体机能被破坏,由此生病。反而“病毒”这个名字是个大大的“冤假错案”,因为病毒其实是无毒的,并不会直接生产什么毒性物质。但是,病毒的杀伤力的确比细菌大得多。虽然病毒的“目标”仅仅是为了尽可能多地复制自己,可结果却是让细胞崩溃瓦解。细胞被病毒侵染之后,能快速生产出数量众多的病毒颗粒,具体数目因病毒不同而差异巨大,从数十个到数十万个不等。

无论数目多少,这些新病毒的生产过程都会把细胞自身的能量和物质储备耗尽。最终,当这些病毒从细胞释放出去时,也就导致了细胞膜的彻底破裂。随着病毒在宿主体内的传播扩散,细胞一个接一个失去功能,死亡瓦解,宿主也就生病了。虽然病毒如此可怕,但细胞生命并非没有对付它们的办法。病毒在地球上存在的历史已经很悠久,很可能与细胞的历史一样悠久。

可以说,它们是与各种细胞生命共同进化而来的,所以细胞生命也就有了各自对付病毒的奇妙办法。细菌虽然只有一个细胞,不可能建立什么免疫系统,但是它们在进化中“学会”了将遭遇过的噬菌体的一部分DNA片段储存到自己的基因组中,称为CRISPR区域。

未来如果在细胞质内检测到序列与CRISPR相匹配的核酸片段,就说明自己又被同样的噬菌体入侵了,于是会发动一种称为Cas9的酶,去篡改破坏噬菌体的DNA,也就打乱了噬菌体复制自己的生产计划。人体的免疫系统也有丰富的手段来对抗病毒。第一道防线是先天免疫,指的是细胞内部的各种机制,与细菌的抗病毒手段有类似之处。第二道防线则是获得性免疫,也就是后天获得的免疫能力。

如果我们的身体见过某种病毒,体内会产生相应抗体,能够识别病毒颗粒并把它们包裹起来,阻止它们对目标细胞的识别对接。这就是我们需要打疫苗的原因。疫苗中是失去毒力的病毒,甚至只是病毒的一个小片段或是类似物,能够把一些可怕病毒的样貌提前“介绍”给我们的免疫系统认识,让免疫系统记住它们,并产生相应的抗体。

除了通过抗体中和病毒,免疫系统一旦发现有细胞已经被病毒侵染了,就会启动杀伤细胞的机制来清除这些被“污染”的细胞。然而这也是一把双刃剑,在冠状病毒引起的严重肺炎中,不少病人其实是死于自身免疫系统暴风骤雨般的强烈杀伤作用之下。有一句颇有哲理的话说:“你永远也叫不醒一个装睡的人。”因为他压根就是醒的,又如何能被叫醒呢?对抗病毒的道理与之多少有些类似。

病毒本就是一条静止的河流,是“死”的生命碎片,你又如何能杀死它呢?实际上,回头看看细菌以及我们自身免疫系统对抗病毒的办法,无外乎两种:要么就是阻止它识别并入侵细胞,要么就是在细胞内阻止它利用细胞的资源去生产新的病毒颗粒。没有一种生物有办法破坏病毒的结构,甚至是直接杀死病毒。于是,经过漫长进化历程中无休无止的“军备竞赛”之后,很多病毒往往会与宿主之间达成一种“和平共处”的平衡态。

比如能够造成普通感冒的鼻病毒(占病因的50%以上)和温和的冠状病毒(占病因的10%到15%),它们就会长期潜伏在我们的呼吸道中,只等我们的免疫力下降时就出来兴风作浪,但只要我们的免疫力恢复正常就又会被压制下去。不过,除了免疫系统,现代人类手中还有药物。药物能杀死病毒吗?很遗憾,答案同样是否定的。我们其实还没有任何一种药物能够致任何一种病毒于死地。

很多人生病了会求医生给开一些抗生素,认为抗生素能杀死所有病原体。但实际上,抗生素类的药物能杀死的只是细菌而已,有些也能杀死衣原体,但它们对病毒都是完全无效的。目前上市销售的抗病毒药物采取的策略与我们的免疫系统一样,要么就是阻止病毒对细胞的入侵,要么就是在某个步骤上阻断细胞内的新病毒生产。

正因为如此,这些药物对抗病毒的效果就没有抗生素杀灭细菌的效果那么好,很难做到立竿见影,往往只能在一定程度上抑制病毒的扩散。此外,抗病毒的药物也不像抗生素那样具备广谱性。如果你被细菌感染,医生往往会直接开药,不会去探究你到底是被哪种细菌感染的,因为临床上常见的病菌大都能被主要的几种抗生素杀死。毕竟,无论哪种细菌,它都是细胞,有着总体上相似的生理机制。

病毒则不然,彼此之间的侵染机制和复制机制都差异极大。一种抗病毒药物的思路往往很难推广到其他种类病毒的研究中。这也导致了抗病毒药物的研究变得更加困难,药物的适用面也很窄。抗病毒药物还面临一个困难,就是病毒的变异。细胞中的核酸复制机器本就有一定的错误率,结果就是基因突变。

或许,这是由于分子机器必然不可能精准;但这也有可能是进化选择的结果,特意保留了一定的出错率,因为只有出错才会产生突变,才有了进化和改变的可能。病毒在身体内扩散传播的速度很快,在细胞中产生的新病毒颗粒又多,因此一代又一代不断复制核酸序列的过程中,也就迅速累积了很多突变。正因为如此,病毒有着远比动植物和细菌都要快的变异速度。在病毒当中,像冠状病毒和艾滋病毒这样的RNA病毒变异速度尤其高。

这是因为,细胞中并没有RNA序列复制所需的分子机器,要由RNA病毒自已提供。而进化选择的结果令这些RNA病毒保留了一台出错率极高的RNA复制机器,这样就会让它们的基因迅速突变,编码出来的蛋白质千变万化,从而逃避抗体的识别。这种高速突变还会使得不同种类的病毒之间偶然出现类似的短小基因片段。这就像是两只猴子随意胡乱敲打键盘,总是有可能偶尔打出同一个单词来。

最近有印度科学家对新型冠状病毒的基因组进行分析,就因此闹出了笑话,误以为基因中有来自艾滋病毒的片段。不过,变异也并非无限的。艾滋病毒再怎么变异,也还是艾滋病毒,这是由于它的一些关键环节不能发生改变。一旦这些环节发生改变,病毒就无法再侵染细胞,或是无法复制了。如果能够抓住这些关键环节,就有希望找到抗病毒的药物。对于冠状病毒来说,主蛋白酶就是它的一个关键环节。

因为冠状病毒那一整条长长的正义RNA链上串着多个基因,生产出的蛋白质也就会串在一起,像是长长的一串糖葫芦。这串糖葫芦中的第一个叫做主蛋白酶,它就像是一把剪刀一样,能够把后面的蛋白质一个一个地切下来。如果有药物能够抑制主蛋白酶的活性,就有希望抑制冠状病毒的复制。要对付病毒,疫苗、药物都是重要的辅助,但都需要进行艰难而漫长的研究。

更为关键的因素,仍旧在于我们每个人自身免疫系统的强健程度,以及我们是否有着良好的卫生习惯和应对突发疫情的正确态度,把病毒阻挡在身体之外。

UUID: eded2b08-c832-4554-a7c8-3f855d28be37

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/科学大院公众号-pdf2txt/2021年/2021-08-12_新冠病毒为什么这么难对付?原因之一在这里.txt

是否为广告: 否

处理费用: 0.0108 元