伴随着“3060双碳目标”的提出,可再生能源火了。作为被寄予厚望,有望在将来大规模替代传统化石燃料的太阳能,那更是火中火。近一年半以来,光伏这一最为成熟的太阳能发电产业,无论是在资本市场,还是舆论关注,均热得发烫。
但光伏并不是太阳能唯一的利用方式,它还有个叫做光热的兄弟。光热,全名聚光太阳能热发电(Concentrated Solar Power,简称“CSP”),与利用半导体材料将太阳光辐射能直接转换为电能的光伏不同,光热依靠的是通过各种镜面聚集太阳直射光,加热导热介质,再经过热交换产生高温蒸气,推动汽轮机发电。
与光伏行业的普及程度相比,光热绝对不是一个认知度很高的概念。它最近一次广泛出现在大众视野内,恐怕还是因为敦煌光热电站,利用定日镜为建党100周年献礼的画面,这在社交媒体上掀起了一阵热潮——但也仅此而已,也许大部分人都没有意识到自己看到的是光热电站,而非光伏。
光伏与光热,都是利用太阳能发电。虽然原理不同,涉及技术也不一样,但为何前者天下知,后者却至今默默无闻?这背后的因素比较复杂。尽管光热在很多方面较光伏有优势,然而也不能否认,光热缺乏政策支持,还存在技术门槛高、前期投资大以及距离商业化比较远等一系列问题。
光热发电系统所利用的发电原理与传统电厂并无差别,还是被戏称为“烧开水”的热电套路,这也是光热系统甚至可以直接接入传统发电厂的原因。从设计上看,业界主流的大型光热发电厂可以分为四个部分,分别是:集热系统,热传输系统,储热系统,发电系统。
集热系统是光热发电系统最核心的组成部分。这一环节负责吸收太阳辐射能,对导热介质进行加热,为后续发电提供能量。不管具体技术路线如何,集热系统总是包含聚光装置与接收器两个核心组件。聚光装置由中央控制系统操控,跟踪太阳位置收集并反射最大量的阳光,将辐射能集中至接收器上。接受器则利用收集到的能量加热内部工质,实现能量的吸收、储运以及转移。
热传输系统则是将集热系统收集起来的热能,利用导热工质(术语称为“工作流体”),输送给后续系统的中间环节。目前最主流的工作流体是熔盐,相较于早期使用的水和导热油,其在熔融态下可保持较宽的工作温度范围,允许系统在低压工况下吸收和储存热能,安全性能出色,是比较理想的工质。
光热发电的解决思路,就是集成储热技术。通过修建储热罐,光热系统可以将被集热器加热过的工质集中储存,再将工质泵出与水换热,产生蒸汽来推动汽轮机发电。之后冷却的工作流体可再次流回集热系统重新加热。热能被储存在储热罐中,则可以在夜间或光照不足的情况下持续工作一段时间,进而突破光照时长的限制,实现在光照条件不足的情况下的发电。
当前比较成熟的光热技术路线有四种,分别为塔式、槽式、菲涅尔式以及碟式。塔式设计为点式聚焦系统,其利用大规模的定日镜组成阵列,将太阳辐射反射并积聚到吸热塔顶部的吸热器对内部工质进行加热。槽式路线属于线性聚焦系统,是通过槽式抛物面聚光镜面,将太阳光汇聚在焦线上,并在焦线上安装管状集热器,从而吸收聚焦后的太阳辐射能。
菲涅尔式光热电站同样属于线性聚焦系统,整体设计与槽式差别不太大,但结构更加简单。它采用靠近地面放置的多个几乎是平面的镜面结,先将阳光反射到上方的二次聚光器上,再进一步汇聚到管状集热器上,然后加热导热介质进行发电。抛物面碟式CSP系统是利用旋转抛物面反射镜,将入射太阳光聚焦到焦点上,通过焦点处放置的斯特林发电装置进行发电。
光热相比光伏最大的优势在于它直接解决了光伏面临的最大缺陷,即发电不可调度。光伏长期以来大部分包括输出不稳定,并网难,与用电需求错配等问题,归根结底都是因为光伏电站的发电难以调度。
然而,光热电价实在是太贵了。根据国际可再生能源机构(IRENA)发布的报告显示,聚光太阳能热发电(CSP)成本高达0.108美元/千瓦时,远超其他所有技术路线,甚至比并不是特别成熟的生物能和地热能还贵。在如此之高的发电成本下,上网电价会有多高不难想象。光热项目缺乏商业化潜力,光热电站的初始投资成本高达2.5万~3.5万/kw,是传统煤电站的3-4倍、陆上风电的3-4倍,光伏电站的4~5倍。
光热发电还对环境要求比较高,对光照条件的要求比光伏高很多,选址难度比较大。同时受工作原理限制,CSP并不是一种特别适合小型化的技术路线,往往占地面积巨大。此外,目前政策方面对光热产业的支持也比较有限,缺乏连续性。作为一个仍处于发展早期,光热产业无疑十分依赖政策扶持,但它与已经十分成熟的风电光伏一同被切断补贴,无疑是对产业的重大打击。
多重因素共同作用之下,如今的光热装机量稀少也就不令人意外了,且短期内也看不到快速增长的可能。数据显示,2020年全国累计光伏发电装机已经达到253.43GW,年内新装机量超过49GW。相比较之下,光热累计装机量在2020年末仅有约0.67GW,年内新增不过0.25GW,和光伏有着几个数量级的差距,距离商业化和规模化可以说遥遥无期。