生物学中的拓扑

作者: 小雨

来源: 物理评论X

发布日期: 2021-07-27

研究人员首次将拓扑概念应用于生物化学网络,发现其与量子霍尔效应中的回旋轨道有相似之处,揭示了生物化学系统中的稳健性与拓扑的关联。这一发现为生物化学领域的研究开辟了新的可能性。

在什么样的情况下,我们能够说一个系统的某个性质是稳健的?一个性质如果是稳健的,则意味着即使系统受到了外部扰动的影响,且无论这种影响有多么强或多么随机,这种性质仍然能保持不变。在数学中,物体在形变方面的稳健性被称为拓扑。在过去的几十年里,物理学家发现量子系统的某些性质只取决于系统的某些基本特征的拓扑,最著名的例子之一就是量子霍尔效应。

这种现象发生在当二维的导电材料遇到垂直于它的磁场时,在这种情况下,材料中的电子会在被称为回旋轨道的小圆圈中移动,在材料的大部分区域不会产生任何净电流,然而在材料的边缘,电子会在完成一个回旋之前反弹,然后朝着相反的方向移动,导致电子沿着边缘产生净流动。那么,拓扑学和生物学之间是否也存在类似的关联呢?生物化学网络通常是非常复杂的,但在变化时又能维持某种稳定性。

这就产生了一个问题,这些生物化学系统的行为是如何做到维持得如此稳健的呢?一直以来,许多研究人员都想要将常被用于描述量子系统的拓扑模型,也用在生物学上。在一项于近期发表在《物理评论X》上的研究中,来自马克斯·普朗克动力学和自组织研究所的研究人员首次成功地将拓扑的概念用在了生物化学网络上。他们注意到,量子霍尔效应中的回旋轨道与生物化学系统中的所谓的“无效循环”有着相似之处。

研究人员模拟一个发生在二维空间中的生物化学过程。一个简单的例子是,一种蛋白质是由两种不同类型的亚基X和Y构成的。他们设置了一个顺时针的无效循环,这个循环所对应的过程是先添加一个Y,再添加一个X,然后移除一个Y,再移除一个X,最终系统回到初始状态。这样的结果意味着,在二维的生物化学反应网络中形成了“静电流”。

而且无论这种系统边缘的形状是否有变化,还是系统整体的无序性的改变,这些生物化学“边缘电流”都显现出了稳健性。此外,研究人员还发现,边缘电流的出现与由能源消耗驱动的无效循环的不平衡性有着不可分割的联系。研究人员想要知道,是否就像在量子霍尔系统中那样,生物化学系统中的这种稳健性是否也来自于拓扑。然而,量子系统中使用的工具并不能直接适用于受经典的随机定律支配的生物化学系统。

为此,研究人员在他们的生物化学系统和一种被称为非厄米量子系统的奇异系统之间设计了一种映射。一旦建立起这种映射,用于拓扑量子系统的整套工具就可以为生物化学系统所用了。新的研究证明了,与量子霍尔效应相同的拓扑概念的确可以存在于生物化学系统中,它能够确保相应的生物化学过程的稳健性。新的研究结果为未来开启了一个充满可能性的新领域。

由拓扑引发生的稳健性,加上生物化学网络中固有的多功能性,能让科学家有望在这些系统中可以观察到的大量意想不到的现象。

UUID: 11f194b8-8ef5-4b9d-a641-614041de2f6f

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/原理公众号-pdf2txt/2021年/2021-07-27_生物学中的拓扑.txt

是否为广告: 否

处理费用: 0.0035 元